dc.contributorPardo Villaveces, Natalia
dc.contributorGonzález Arango, Catalina
dc.contributorRodríguez Vargas, Andrés Ignacio
dc.contributorEcología Histórica y Memoria Social (EHMS)
dc.creatorCañas Molina, Samuel David
dc.date.accessioned2023-06-23T16:49:07Z
dc.date.accessioned2023-09-07T01:43:07Z
dc.date.available2023-06-23T16:49:07Z
dc.date.available2023-09-07T01:43:07Z
dc.date.created2023-06-23T16:49:07Z
dc.date.issued2023-06-09
dc.identifierhttp://hdl.handle.net/1992/67854
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728600
dc.description.abstractLos diferentes grupos de agua dentro de un sistema hidrotermal contienen propiedades fisicoquímicas específicas y diferenciables desde distintas perspectivas. Para esta investigación se realizó una caracterización geoquímica de los principales nacimientos de agua en el flanco occidental del Complejo Volcánico Doña Juana, correlacionando e integrando categorizaciones establecidas por habitantes locales en base a sus usos generales y algunas propiedades organolépticas, con parámetros geoquímicos medibles en muestras de agua, suelos/sustratos y rocas a través de fluorescencia de rayos X portátil (XRF) y espectrometría de masas con plasma acoplado inductivamente (ICP-MS). Este proyecto permite comprender la relación entre la perspectiva social y geoquímica sobre el agua, orientado de tal manera que pueda servir como una base preliminar de lenguaje común entre ciencia y comunidades locales para mejorar estrategias de percepción local de cambios en las propiedades del agua y que eventualmente puedan contribuir a la vigilancia volcánica centrada en comunidades.
dc.description.abstractThe different groups of water within a hydrothermal system contain specific and distinguishable physicochemical properties from different perspectives. For this research, a geochemical characterization of the main sources of water on the western flank of the Doña Juana Volcanic Complex was carried out, correlating and integrating categorizations established by local inhabitants based on their general uses and some organoleptic properties, with measurable geochemical parameters in samples of water, soils/substrates and rocks through portable X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). This project allows us to understand the relationship between the social and geochemical perspective on water, oriented in such a way that it can serve as a preliminary basis for a common language between science and local communities to improve strategies for local perception of changes in water properties and that may eventually contribute to community-focused volcanic monitoring.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherGeociencias
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Geociencias
dc.relationAgusto, M., & Varekamp, J. (2015). The Copahue Volcanic-Hydrothermal System and Applications for Volcanic Surveillance. Active Volcanoes of the World, 199-238. https://doi.org/10.1007/978-3-662-48005-2_9
dc.relationAllan, M. M., & Yardley, B. W. D. (2007). Tracking meteoric infiltration into a magmatic-hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chemical Geology, 240(3-4), 343-360. https://doi.org/10.1016/j.chemgeo.2007.03.004
dc.relationAndreastuti, S., Paripurno, E., Gunawan, H., Budianto, A., Syahbana, D., & Pallister, J. (2019). Character of community response to volcanic crises at Sinabung and Kelud volcanoes. Journal of Volcanology and Geothermal Research, 382, 298-310. https://doi.org/10.1016/j.jvolgeores.2017.01.022
dc.relationArnórsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochimica Et Cosmochimica Acta, 47(3), 547-566. https://doi.org/10.1016/0016-7037(83)90277-6
dc.relationArnorsson, S., Stefansson, A., & Bjarnason, J. O. (2007). Fluid-Fluid Interactions in Geothermal Systems. Reviews in Mineralogy and Geochemistry, 65(1), 259-312. https://doi.org/10.2138/rmg.2007.65.9
dc.relationBaillie, I. C. (2006). Soil Survey Staff 1999, Soil Taxonomy. Soil Use and Management, 17(1), 57-60. https://doi.org/10.1111/j.1475-2743.2001.tb00008.x
dc.relationBallentine, C. J., Burgess, R., & Marty, B. (2002). Tracing Fluid Origin, Transport and Interaction in the Crust. Reviews in Mineralogy and Geochemistry, 47(1), 539-614. https://doi.org/10.2138/rmg.2002.47.13
dc.relationBarbosa-Camacho, G. (2003). Memoria explicativa Mapa Geológico del Departamento del Cauca. Informe Interno Ingeominas, Cali, Colombia.
dc.relationBar-Yam, Y. (2003). Dynamics Of Complex Systems. Studies in nonlinearity. Addison-Wesley, Reading, ISBN 0813341213.
dc.relationBerry, K. J., Kvamme, K. L., Johnston, J. E., & Mielke, P. W., Jr. (2021). Permutation Statistical Methods with R. Springer Nature.
dc.relationBobbette, A. (2018). Cosmological Reason on a Volcano. Political Geology, 169-199. https://doi.org/10.1007/978-3-319-98189-5_6
dc.relationBoudoire, G., Calabrese, S., Colacicco, A., Sordini, P., Habakaramo Macumu, P., Rafflin, V., Valade, S., Mweze, T., Kazadi Mwepu, J. C., Safari Habari, F., Amani Kahamire, T., Mumbere Mutima, Y., Ngaruye, J. C., Tuyishime, A., Tumaini Sadiki, A., Mavonga Tuluka, G., Mapendano Yalire, M., Kets, E. D., Grassa, F., . . . Tedesco, D. (2022). Scientific response to the 2021 eruption of Nyiragongo based on the implementation of a participatory monitoring system. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11149-0
dc.relationBowen, R. (1989). Geothermal Systems and Models. In Geothermal Resources (pp. 64-116). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1103-1_3
dc.relationBrown, C. E. (2012). Applied Multivariate Statistics in Geohydrology and Related Sciences. Springer Science & Business Media.
dc.relationBrusca, L., Aiuppa, A., D'Alessandro, W., Parello, F., Allard, P., & Michel, A. (2001). Geochemical mapping of magmatic gas-water-rock interactions in the aquifer of Mount Etna volcano. Journal of Volcanology and Geothermal Research, 108(1-4), 199-218. https://doi.org/10.1016/s0377-0273(00)00286-9
dc.relationBull, A., Brown, M. T., & Turner, A. (2017). Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae. Environmental Pollution, 220, 228-233. https://doi.org/10.1016/j.envpol.2016.09.049
dc.relationCarapezza, M. L., & Federico, C. (2000). The contribution of fluid geochemistry to the volcano monitoring of Stromboli. Journal of Volcanology and Geothermal Research, 95(1-4), 227-245. https://doi.org/10.1016/s0377-0273(99)00128-6
dc.relationCarlson, T., & Cohen, A. (2018). Linking community-based monitoring to water policy: Perceptions of citizen scientists. Journal of Environmental Management, 219, 168-177. https://doi.org/10.1016/j.jenvman.2018.04.077
dc.relationCediel, F., Shaw, R. A., & Cceres, C. (2003). Tectonic Assembly of the Northern Andean Block. American Association of Petroleum Geologists EBooks. https://doi.org/10.1306/m79877c37
dc.relationCediel, F., & Shaw, R. P. (2019). Geology and Tectonics of Northwestern South America. In Frontiers in earth sciences. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-76132-9
dc.relationChapin, F. S., III, Matson, P. A., & Mooney, H. A. (2006). Principles of Terrestrial Ecosystem Ecology. Springer Science & Business Media.
dc.relationConrad, C. (2006). Community-based monitoring and the science of water quality. IAHS-AISH Publication, 217-228.
dc.relationCook, D., Malinauskaite, L., & Davíðsdóttir, B. (2022). Peering into the fire - An exploration of volcanic ecosystem services. Ecosystem Services, 55, 101435. https://doi.org/10.1016/j.ecoser.2022.101435
dc.relationCortines, A. C., Possidônio, R. D., Bahia, N. C. F., Oswaldo Cruz, J. C. H., Esteves De Freitas, L., & Gallo, E. (2017). Social Cartography and the Defense of the Traditional Caiçara Territory of Trindade (Paraty, RJ, Brazil). Climate Change Management, 445-456. https://doi.org/10.1007/978-3-319-56946-8_27
dc.relationDahlgren, R. A., Saigusa, M., & Ugolini, F. C. (2004). The Nature, Properties and Management of Volcanic Soils. Elsevier EBooks, 113-182. https://doi.org/10.1016/s0065-2113(03)82003-5
dc.relationD'Amore, F., & Panichi, C. (1985). Geochemistry in geothermal exploration. International Journal of Energy Research, 9(3), 277-298. https://doi.org/10.1002/er.4440090307
dc.relationGarcía, C., & Mendez-Fajury, R. (2017). If I Understand, I Am Understood: Experiences of Volcanic Risk Communication in Colombia. Advances in Volcanology, 335-351. https://doi.org/10.1007/11157_2016_46
dc.relationGiggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica Et Cosmochimica Acta, 52(12), 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
dc.relationGoff, F., & Janik, C. J. (1999). Volcano Interactions: Geothermal Systems. In Encyclopedia of Volcanoes (1st ed., pp. 817-834). Elsevier Science.
dc.relationGunn, J., Bottrell, S. H., Lowe, D. J., & Worthington, S. R. H. (2006). Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeology Journal, 14(6), 868-881. https://doi.org/10.1007/s10040-006-0022-7
dc.relationHill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42(1-3), 47-58. https://doi.org/10.1007/bf00048870
dc.relationHuggett, R. J. (1995). Geoecology: An Evolutionary Approach. Taylor & Francis US.
dc.relationInguaggiato, S., Londoño, J., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. M. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011-2013. Chemical Geology, 469, 60-68. https://doi.org/10.1016/j.chemgeo.2016.12.020
dc.relationJolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
dc.relationLagerström, M., Norling, M., & Eklund, B. (2016). Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF. Environmental Science and Pollution Research, 23(10), 10146-10157. https://doi.org/10.1007/s11356-016-6241-0
dc.relationLanda, E. R. (2004). ALBERT H. MUNSELL: A SENSE OF COLOR AT THE INTERFACE OF ART AND SCIENCE. Soil Science, 169(2), 83-89. https://doi.org/10.1097/01.ss.0000117789.98510.30
dc.relationLee, P. (1968). Applications of Canonical Correlation in Geology [PhD Theses]. McMaster University.
dc.relationLimberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., & Van Wees, J. (2018). Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renewable & Sustainable Energy Reviews, 82, 961-975. https://doi.org/10.1016/j.rser.2017.09.084
dc.relationLongerich, H. P. (1995). Analysis of pressed pellets of geological samples using wavelength-dispersive x-ray fluorescence spectrometry. X-Ray Spectrometry, 24(3), 123-136. https://doi.org/10.1002/xrs.1300240309
dc.relationMarín, A., Vergara-Pinto, F., Prado, F., & Farías, C. (2020). Living near volcanoes: Scoping the gaps between the local community and volcanic experts in southern Chile. Journal of Volcanology and Geothermal Research, 398, 106903.
dc.relationMarín-Cerón, M. I., & Molina, M. M. (2000). Caracterización Geológica, Petrográfica y Geoquímica del Volcán Doña Juana, Departamento De Nariño [Tesis de grado]. Universidad Nacional de Colombia.
dc.relationMarín-Cerón, M., Leal-Mejía, H., Bernet, M., & Mesa-García, J. (2019). Late Cenozoic to Modern-Day Volcanism in the Northern Andes: A Geochronological, Petrographical, and Geochemical Review. Frontiers in Earth Sciences, 603-648. https://doi.org/10.1007/978-3-319-76132-9_8
dc.relationMaya, M. A., & González, H. E. (1995). Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2-3), 44-57. https://doi.org/10.32685/0120-1425/bolgeol35.2-3.1995.316
dc.relationMcDaniel, P. A., Lowe, D. J., Arnalds, O., & Ping, C.-L. (2012). Andisols. In Handbook of Soil Sciences. Properties and Processes (2nd ed., Vol. 1, pp. 29-48). CRC Press (Taylor & Francis).
dc.relationMelquiades, F. L., & Appoloni, C. R. (2004). Application of XRF and field portable XRF for environmental analysis. Journal of Radioanalytical and Nuclear Chemistry, 262(2), 533-541. https://doi.org/10.1023/b:jrnc.0000046792.52385.b2
dc.relationMéndez, N., & Baird, D. G. (2002). Effects of cadmium on sediment processing on members of the Capitella species-complex. Environmental Pollution, 120(2), 299-305. https://doi.org/10.1016/s0269-7491(02)00145-8
dc.relationMolina, E. F., & Little, A. B. (1981). Geoecology of the Andes: The Natural Science Basis for Research Planning. Mountain Research and Development, 1(2), 115. https://doi.org/10.2307/3673119
dc.relationMothes, P. A., Yepes, H. A., Hall, M. L., Ramón, P. A., Steele, A. L., & Ruiz, M. C. (2015). The scientific-community interface over the fifteen-year eruptive episode of Tungurahua Volcano, Ecuador. Journal of Applied Volcanology, 4(1). https://doi.org/10.1186/s13617-015-0025-y
dc.relationMurcia, A., & Cepeda, H. (1991). Geología de la plancha 410 La Unión. Departamento de Nariño. Escala 1:100.000. Producto. Versión año 1991. S. G. C. Servicio Geológico Colombiano. https://doi.org/10.32685/10.143.1991.235
dc.relationNavarrete, M. P. (2018). Petrography of the Doña Juana volcanic complex (DJVC) basement: implications in the quaternary magmatism [Tesis de Pregrado]. Universidad de los Andes.
dc.relationNicholson, K. (1993). Geothermal Systems. Springer Berlin Heidelberg EBooks, 1-18. https://doi.org/10.1007/978-3-642-77844-5_1
dc.relationNivia, A., Marriner, G. F., Kerr, A., & Tarney, J. (2006). The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 423-436. https://doi.org/10.1016/j.jsames.2006.07.002
dc.relationNorton, D. L. (1984). Theory of Hydrothermal Systems. Annual Review of Earth and Planetary Sciences, 12(1), 155-177. https://doi.org/10.1146/annurev.ea.12.050184.001103
dc.relationNovák, V., & Hlaváciková, H. (2018). Applied Soil Hydrology. Springer.
dc.relationNovák, V., & Hlaváciková, H. (2019a). Interaction of Groundwater and Soil Water. Springer International Publishing EBooks, 171-188. https://doi.org/10.1007/978-3-030-01806-1_12
dc.relationNovák, V., & Hlaváciková, H. (2019b). Soil-Water Interface Phenomena. Theory and Applications of Transport in Porous Media, 37-47. https://doi.org/10.1007/978-3-030-01806-1_4
dc.relationNúñez, T. A. (2003). . Cartografía Geológica de las zonas Andina Sur y Garzón-Quetame (Colombia), Reconocimiento geológico regional de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448; Monopamba, 449 Orito y 465 Churuyaco. In INGEOMINAS. Memorias, Febrero de 2003. 298 p, Internal Report, Bogotá, Colombia.
dc.relationOrrego, A., París, G., Ibáñez, D., & Vásquez, E. (1996). Geología y geoquímica de la plancha 387-Bolívar (inf. tec.). INGEOMINAS.
dc.relationOxford Instruments. (2013). X-MET7000 Series 6.
dc.relationPardo, N., Espinosa, M. L., González-Arango, C., Cabrera, M. A., Salazar, S., Archila, S., Palacios, N., Prieto, D., Camacho, R., & Parra-Agudelo, L. (2021). Worlding resilience in the Doña Juana Volcano-Páramo, Northern Andes (Colombia): A transdisciplinary view. Natural Hazards, 107(2), 1845-1880. https://doi.org/10.1007/s11069-021-04662-4
dc.relationPardo, N., Pulgarín, B., & Betancourt, V. (2016). Avances en el conocimiento sobre el Complejo Volcánico Doña Juana: integración del análisis de litofacies, estratigrafía, geocronología y petrología. Informe interno Servicio Geológico Colombiano, Bogotá.
dc.relationPardo, N., Pulgarín, B., Betancourt, V., Lucchi, F., & Valencia, L. (2019). Facing geological mapping at low-latitude volcanoes: The Doña Juana Volcanic Complex study-case, SW-Colombia. Journal of Volcanology and Geothermal Research, 385, 46-67. https://doi.org/10.1016/j.jvolgeores.2018.04.016
dc.relationPardo, N., Sulpizio, R., Lucchi, F., Giordano, G., Cronin, S., Pulgarín, B., Roverato, M., Correa-Tamayo, A. M., Camacho, R., & Cabrera, M. A. (2023). Late Holocene volcanic stratigraphy and eruption chronology of the dacitic Young Doña Juana volcano, Colombia. GeoScienceWorld. https://doi.org/10.1130/b36557.1
dc.relationPérez-Espinosa, R., Pandarinath, K., & Hernández-Campos, F. (2019). CCWater - A computer program for chemical classification of geothermal waters. Geosciences Journal, 23(4), 621-635. https://doi.org/10.1007/s12303-018-0064-6
dc.relationPiper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, 25(6), 914. https://doi.org/10.1029/tr025i006p00914
dc.relationPirajno, F. (2009). Water and Hydrothermal Fluids on Earth. Springer Netherlands EBooks, 1-71. https://doi.org/10.1007/978-1-4020-8613-7_1
dc.relationRollinson, H., & Pease, V. (2021). Using Geochemical Data: To Understand Geological Processes. Cambridge University Press.
dc.relationRouwet, D., Taran, Y., & Inguaggiato, S. (2015). Fluid Geochemistry of Tacaná Volcano-Hydrothermal System. Active Volcanoes of the World, 139-154. https://doi.org/10.1007/978-3-642-25890-9_7
dc.relationRuiz, S. (2002). Geología de la plancha 386 Mercaderes. Escala 1:100.000. Versión año 2002. Producto. S. G. C. Servicio Geológico Colombiano. https://doi.org/10.32685/10.143.2002.710
dc.relationSahdev, S., Singh, R. B., & Kumar, M. (2021). Geoecology of Landscape Dynamics. Springer.
dc.relationSalvatore Inguaggiato, Agnes Mazot, & Takeshi Ohba. (2011). Monitoring active volcanoes: The geochemical approach. Annals of Geophysics, 54(2). https://doi.org/10.4401/ag-5187
dc.relationSánchez-Espinosa, J. H., & Rubiano-Sanabria, Y. (2015). PROCESOS ESPECÍFICOS DE FORMACIÓN EN ANDISOLES, ALFISOLES Y ULTISOLES EN COLOMBIA. Revista EIA, 1(1), 85-97. https://doi.org/10.24050/reia.v1i1.709
dc.relationSarmiento, F. O., Ibarra, J. A., Barreau, A., Pizarro, J. L., Rozzi, R., González, J. J. M., & Frolich, L. M. (2017). Applied Montology Using Critical Biogeography in the Andes. Annals of the American Association of Geographers, 107(2), 416-428. https://doi.org/10.1080/24694452.2016.1260438
dc.relationSchiller, C. M., Whitlock, C., Alt, M., & Morgan, L. A. (2020). Vegetation responses to Quaternary volcanic and hydrothermal disturbances in the Northern Rocky Mountains and Greater Yellowstone Ecosystem (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 559, 109859. https://doi.org/10.1016/j.palaeo.2020.109859
dc.relationSchwertmann, U. (1993). Relations Between Iron Oxides, Soil Color, and Soil Formation. SSSA Special Publication Series, 51-69. https://doi.org/10.2136/sssaspecpub31.c4
dc.relationSemenkov, I. N., Klink, G. V., Lebedeva, M. P., Krupskaya, V. V., Chernov, M. S., Dorzhieva, O. V., Kazinskiy, M. T., Sokolov, V. N., & Zavadskaya, A. V. (2021). The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90712-7
dc.relationSheets, P. (2016). Thoughts and observations on volcanic activity and human ecology. Quaternary International, 394, 152-154. https://doi.org/10.1016/j.quaint.2015.08.070
dc.relationShibata, Y., Suyama, J., Kitano, M., & Nakamura, T. (2009). X-ray fluorescence analysis of Cr, As, Se, Cd, Hg, and Pb in soil using pressed powder pellet and loose powder methods. X-Ray Spectrometry, 38(5), 410-416. https://doi.org/10.1002/xrs.1195
dc.relationShoedarto, R. M., Tada, Y., Kashiwaya, K., Koike, K., Iskandar, I., Malik, D., & Bratakusuma, B. (2021). Investigation of meteoric water and parent fluid mixing in a two-phase geothermal reservoir system using strontium isotope analysis: A case study from Southern Bandung, West Java, Indonesia. Geothermics, 94, 102096.
dc.relationShoji, S., Dahlgren, R. A., & Nanzyo, M. (1993). Chapter 4 Classification of Volcanic Ash Soils. Developments in Psychiatry. https://doi.org/10.1016/s0166-2481(08)70265-4
dc.relationShoji, S., Nanzyo, M., Dahlgren, R. A., & Quantin, P. (1996). EVALUATION AND PROPOSED REVISIONS OF CRITERIA FOR ANDOSOLS IN THE WORLD REFERENCE BASE FOR SOIL RESOURCES. Soil Science, 161(9), 604-615. https://doi.org/10.1097/00010694-199609000-00005
dc.relationSilva, V., Zabala, M. E., & Fabra, M. (2019). Cartografía Social como recurso metodológico para el análisis patrimonial. Experiencias de mapeo en Miramar (Córdoba, Argentina). Perspectiva Geografica, 24(2). https://doi.org/10.19053/01233769.8631
dc.relationSmeltz, N. Y., Sims, K. W., Carr, B. J., & Parsekian, A. D. (2022). Geologic controls on hydrothermal groundwater mixing in Yellowstone National Park. Journal of Volcanology and Geothermal Research, 431, 107650. https://doi.org/10.1016/j.jvolgeores.2022.107650
dc.relationStiff, H. A. (1951). The Interpretation of Chemical Water Analysis by Means of Patterns. Journal of Petroleum Technology, 3(10), 15-3. https://doi.org/10.2118/951376-g
dc.relationStimac, J. A., Goff, F., & Goff, C. J. (2015). Intrusion-Related Geothermal Systems. Elsevier EBooks, 799-822. https://doi.org/10.1016/b978-0-12-385938-9.00046-8
dc.relationStone, J., Barclay, J., Simmons, P., Cole, P. D., Loughlin, S. C., Ramón, P., & Mothes, P. (2014). Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. Journal of Applied Volcanology, 3(1). https://doi.org/10.1186/s13617-014-0011-9
dc.relationSuarez, A., Ruiz-Agudelo, C. A., Arias-Arévalo, P., Flórez-Yepes, G. Y., Arciniegas, N., Vargas-Marín, L. A., Marulanda, A., Ramirez, J., Castro-Escobar, E., Bastidas, J. C., & Blanco, D. (2022). Recognizing, normalizing and articulating: An approach to highlight plural values of water ecosystem services in Colombia. Heliyon, 8(9), e10622. https://doi.org/10.1016/j.heliyon.2022.e10622
dc.relationTorrent, J., & Barrón, V. (2015). Laboratory Measurement of Soil Color: Theory and Practice. SSSA Special Publication Series, 21-33. https://doi.org/10.2136/sssaspecpub31.c2
dc.relationTrendafilov, N., & Gallo, M. (2021). Multivariate Data Analysis on Matrix Manifolds: (with Manopt). Springer Nature.
dc.relationTsai, C., Chen, Z., Kao, C. I., Ottner, F., Kao, S. C., & Zehetner, F. (2010). Pedogenic development of volcanic ash soils along a climosequence in Northern Taiwan. Geoderma, 156(1-2), 48-59. https://doi.org/10.1016/j.geoderma.2010.01.007
dc.relationVillagómez, D., Spikings, R. A., Magna, T., Kammer, A., Klug, C., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
dc.relationWeber, M. (1998). The Mercaderes- Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal proceses in the Northen Andes [PhD. Thesis]. University of Leicester.
dc.relationWehn, U. (2022). Citizen Science for Co-monitoring and Co-managing Impact on Ecosystems and Inland Waters. Encyclopedia of Inland Waters, 35-46. https://doi.org/10.1016/b978-0-12-819166-8.00184-5
dc.relationWohletz, K., & Heiken, G. (1992). Surface Manifestations of Geothermal Systems. In Volcanology and Geothermal Energy (pp. 120-141). Berkeley: University of California Press. http://ark.cdlib.org/ark:/13030/ft6v19p151/
dc.rightsAtribución 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleLas voces del agua: caracterización transdisciplinar del agua en un geo-ecosistema volcánico
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución