dc.contributorLozano Garzón, Carlos Andrés
dc.contributorAmbiente Integrado de Aprendizaje (AIA) COMMIT/PILO
dc.creatorMéndez Galvis, Juan Andrés
dc.date.accessioned2023-08-04T21:58:49Z
dc.date.accessioned2023-09-07T01:39:41Z
dc.date.available2023-08-04T21:58:49Z
dc.date.available2023-09-07T01:39:41Z
dc.date.created2023-08-04T21:58:49Z
dc.date.issued2023-08-03
dc.identifierhttp://hdl.handle.net/1992/69293
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728548
dc.description.abstractIn the context of the Fourth Industrial Revolution, the Ambiente Integrado de Aprendizaje (AIA) lab at the University of the Andes, Colombia, recognized the need to utilize underexploited hardware for research and development. This research aimed to create a digital twin of the UR3 Industrial Collaborative Robot, mimicking a pick-and-place task, to make experimentation accessible to researchers, students, and curiosity-driven individuals. Using an incremental development methodology in Robot Operating System (ROS) Gazebo and adhering to best practices in Python, a digital twin with integrated telemetry and object recognition modules was successfully developed. A detailed architecture was also outlined, bridging both real hardware and simulated environments. The project resulted in a digital twin that accurately reflected the real hardware, accessible via Dockerization, and contributed to the AIA lab¿s capabilities. Challenges were encountered in accurately simulating specific behaviors, such as the grasping task, highlighting areas for future research. This work marks a significant step towards the integration of digital twin technology in Reinforcement learning (RL) applications and showcases the potential of digitalization in enhancing experimental accessibility and flexibility in robotics.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.rightsAtribución 4.0 Internacional
dc.rightsAl consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDevelopment of a Digital Twin for the UR3 industrial collaborative robot arm with the Robotiq Hande gripper attachment using ROS: Laying the Foundation for Reinforcement Learning Research and Advanced Academic Exploration
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución