dc.contributorRueda Cárdenas, Eduardo José
dc.contributorCaro Spinel, Silvia
dc.creatorCastillo Niño, Jairo Alejandro
dc.date.accessioned2023-08-04T18:51:32Z
dc.date.accessioned2023-09-07T01:34:23Z
dc.date.available2023-08-04T18:51:32Z
dc.date.available2023-09-07T01:34:23Z
dc.date.created2023-08-04T18:51:32Z
dc.date.issued2023-08-03
dc.identifierhttp://hdl.handle.net/1992/69247
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728469
dc.description.abstractEl aprovechamiento de una sustancia renovable en vez de ligantes asfálticos sería mejor para el medio ambiente. Se investigó reemplazar parcialmente el asfalto con lignina (8 y 14%) para determinar su efecto en el comportamiento a fractura y daño por humedad del mortero asfáltico en distintas condiciones de envejecimiento. Con el propósito de evaluar la resistencia al daño por humedad, se realizó la metodología TSR (Relación de Resistencia a la Tracción). Además, se realizaron pruebas de flexión semicircular (ensayo SCB) para evaluar su resistencia a la fractura frágil. Durante estas pruebas, se utilizaron diferentes índices de fractura, como el Índice de Flexibilidad (FI), el Índice de Resistencia a la Grieta (CRI), la Carga Máxima (Pmax) y la Rigidez (S). Adicionalmente, se realizó un análisis de varianza para conocer la diferencia significativa de los resultados con distintas dosificaciones de lignina. Se observó una mejor resistencia al daño por humedad de los morteros que contenían lignina. Sin embargo, no se pudo concluir la influencia de la lignina en la resistencia a la fisuración de los morteros evaluados.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationS. Xie, Q. Li, P. Karki, F. Zhou, and J. S. Yuan, "Lignin as Renewable and Superior Asphalt Binder Modifier," ACS Sustain. Chem. Eng., vol. 5, no. 4, pp. 2817-2823, Mar. 2017, doi: 10.1021/acssuschemeng.6b03064
dc.relationP. Wang, Z. Dong, Y. Tang, and Z. Liu, "Investigating the Interactions of the Saturate, Aromatic, Resin, and Asphaltene Four Fractions in Asphalt Binders by Molecular Simulations," Energy. Fuels., vol. 29, no. 1, pp. 112-121, Dec. 2014, doi: 10.1021/ef502172n
dc.relationW. Boerjan, J. Ralph, and M. Baucher, "Lignin Biosynthesis," Annual Review of Plant Biology, vol. 54. pp. 519-546, 2003. doi: 10.1146/annurev.arplant.54.031902.134938.
dc.relationM. Benali, O. Ajao, J. Jeaidi, and B. Mansoornejad, "Integrated lignin-kraft pulp biorefinery for the production of lignin and its derivatives: Economic Assessment and LCA-Based Environmental Footprint," Production of Biofuels and Chemicals from Lignin, pp. 379-418, Sep. 2016, doi: 10.1007/978-981-10-1965-4_13.
dc.relationD. S. Bajwa, G. Pourhashem, A. H. Ullah, and S. G. Bajwa, "A concise review of current lignin production, applications, products and their environment impact," Ind Crops Prod, vol. 139, Nov. 2019, doi: 10.1016/j.indcrop.2019.111526.
dc.relationJ. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, "The catalytic valorization of lignin for the production of renewable chemicals," Chem Rev, vol. 110, no. 6, pp. 3552-3599, Jun. 2010, doi: 10.1021/cr900354u.
dc.relationD. van Vliet, T. Slaghek, C. Giezen, and I. Haaksman, "Lignin as a green alternative for bitumen," Czech Technical University in Prague - Central Library, Jan. 2017. doi: 10.14311/ee.2016.159.
dc.relationM. Montazeri and M. J. Eckelman, "Life Cycle Assessment of Catechols from Lignin Depolymerization," ACS Sustain Chem Eng, vol. 4, no. 3, pp. 708-718, Mar. 2016, doi: 10.1021/acssuschemeng.5b00550.
dc.relationP. Wang, Z. Dong, Y. Tan, and Z. Liu, "Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis," International Journal of Biological Macromolecules, vol. 197. Elsevier B.V., pp. 179-200, Feb. 01, 2022. doi: 10.1016/j.ijbiomac.2021.12.146.
dc.relationC. Kou, Z. Chen, A. Kang, M. Zhang, and R. Wang, "Rheological behaviors of asphalt binders reinforced by various fibers," Constr Build Mater, vol. 323, Mar. 2022, doi: 10.1016/j.conbuildmat.2022.126626.
dc.relationX. Xing et al., "Effect of different fibers on the properties of asphalt mastics," Constr Build Mater, vol. 262, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120005.
dc.relationM. Fakhri and M. A. Norouzi, "Rheological and ageing properties of asphalt bio-binders containing lignin and waste engine oil," Constr Build Mater, vol. 321, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126364.
dc.relationE. Norgbey et al., "Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads," Constr Build Mater, vol. 230, Jan. 2020, doi: 10.1016/j.conbuildmat.2019.116957.
dc.relationJ. Gao, H. Wang, C. Liu, D. Ge, Z. You, and M. Yu, "High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder," Constr Build Mater, vol. 230, p. 117063, 2020, doi: 10.1016/j.conbuildmat.2019.117063.
dc.relationD. Luo et al., "The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review," Construction and Building Materials, vol. 209. Elsevier Ltd, pp. 377-387, Jun. 10, 2019. doi: 10.1016/j.conbuildmat.2019.03.126.
dc.relationK. B. Batista et al., "High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders," Ind Crops Prod, vol. 111, pp. 107-116, Jan. 2018, doi: 10.1016/j.indcrop.2017.10.010
dc.relationG. Xu, H. Wang, and H. Zhu, "Rheological properties and anti-aging performance of asphalt binder modified with wood lignin," Constr Build Mater, vol. 151, pp. 801-808, Oct. 2017, doi: 10.1016/j.conbuildmat.2017.06.151.
dc.relationJ. Yu, M. Vaidya, G. Su, S. Adhikari, E. Korolev, and S. Shekhovtsova, "Experimental study of soda lignin powder as an asphalt modifier for a sustainable pavement material," Constr Build Mater, vol. 298, Sep. 2021, doi: 10.1016/j.conbuildmat.2021.123884.
dc.relationX. Wu, S. Easa, A. Kang, P. Xiao, Z. Fan, and X. Zheng, "Performance evaluation of lignin-fibre reinforced asphalt mixture modified by anti-rutting agent," Constr Build Mater, vol. 346, Sep. 2022, doi: 10.1016/j.conbuildmat.2022.128152.
dc.relationZ. Li, K. Li, W. Chen, W. Liu, Y. Yin, and P. Cong, "Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders," Constr Build Mater, vol. 338, Jul. 2022, doi: 10.1016/j.conbuildmat.2022.127652.
dc.relationR. Zhang et al., "Lignin structure defines the properties of asphalt binder as a modifier," Constr Build Mater, vol. 310, Dec. 2021, doi: 10.1016/j.conbuildmat.2021.125156.
dc.relationJ. Wu, Q. Liu, C. Wang, W. Wu, and W. Han, "Investigation of lignin as an alternative extender of bitumen for asphalt pavements," J Clean Prod, vol. 283, Feb. 2021, doi: 10.1016/j.jclepro.2020.124663.
dc.relationD. Hu, X. Gu, G. Wang, Z. Zhou, L. Sun, and J. Pei, "Performance and mechanism of lignin and quercetin as bio-based anti-aging agents for asphalt binder: A combined experimental and ab initio study," J Mol Liq, vol. 359, Aug. 2022, doi: 10.1016/j.molliq.2022.119310.
dc.relationB. Wu, Z. Pei, C. Luo, J. Xia, C. Chen, and A. Kang, "¿Effect of different basalt fibers on the rheological behavior of asphalt mastic," Constr Build Mater, vol. 318, Feb. 2022, doi: 10.1016/j.conbuildmat.2021.125718.
dc.relationA. R. Pasandín, E. Nardi, N. Pérez-Barge, and E. Toraldo, "Valorisation of lignin-rich industrial byproduct into half-warm mix reclaimed asphalt with enhanced performance," Constr Build Mater, vol. 315, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125770.
dc.relationS. Arafat, N. Kumar, N. M. Wasiuddin, E. O. Owhe, and J. G. Lynam, "Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties," J Clean Prod, vol. 217, pp. 456-468, 2019, doi: 10.1016/j.jclepro.2019.01.238.
dc.relationL. Espinosa and S. Caro, "Multiscale study of the influence of the volumetric properties and loading conditions on the fracture properties of hma materials," Universidad de los Andes, Bogotá D.C., 2019. Accessed: May 09, 2023. [Online]. Available: https://repositorio.uniandes.edu.co/handle/1992/62449
dc.relationC. Chen, F. Yin, P. Turner, R. C. West, and N. Tran, "Selecting a laboratory loose mix aging protocol for the NCAT top-down cracking experiment," Transp Res Rec, vol. 2672, no. 28, pp. 359-371, Jan. 2018, doi: 10.1177/0361198118790639.
dc.relationAASHTO, Standard Method of Resistance of Compacted Asphalt Mixtures to MoistureInduced Damage: Designation T283-21. Washington, D.C.: AASHTO provisional standards, 2021.
dc.relationAASHTO, Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature: Designation TP124- 16. Washington, D.C.: AASHTO provisional standards, 2016. [Online]. Available: www.matest.ru
dc.relationQ. Lv, J. Lu, X. Tang, Y. Hu, and C. Yan, "Evaluation of the moisture resistance of rubberized asphalt using BBS/UTM bonding test, TSR and HWT test," Constr Build Mater, vol. 340, Jul. 2022, doi: 10.1016/j.conbuildmat.2022.127831.
dc.relationR. Zhang, J. E. Sias, and E. V. Dave, "Evaluation of the cracking and aging susceptibility of asphalt mixtures using viscoelastic properties and master curve parameters," Journal of Traffic and Transportation Engineering (English Edition), vol. 9, no. 1, pp. 106-119, Feb. 2022, doi: 10.1016/j.jtte.2020.09.002.
dc.relationI. P. Pérez, A. M. Rodríguez Pasandín, J. C. Pais, and P. A. Alves Pereira, "Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures," J Clean Prod, vol. 220, pp. 87-98, May 2019, doi: 10.1016/j.jclepro.2019.02.082.
dc.relationG. Zeng, X. Yang, L. Chen, and F. Bai, "Damage Evolution and Crack Propagation in Semicircular Bending Asphalt Mixture Specimens," China Acta Mechanica Solida Sinica, vol. 29, no. 6, 2016.
dc.relationM. Zarei, A. Abdi Kordani, and M. Zahedi, "Pure mode I and pure mode II fracture resistance of modified hot mix asphalt at low and intermediate temperatures," Fatigue Fract Eng Mater Struct, vol. 44, no. 8, pp. 2222-2243, Aug. 2021, doi: 10.1111/ffe.13508.
dc.relationB. Wu, W. Meng, J. Xia, and P. Xiao, "Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis," Materials, vol. 15, no. 3, Feb. 2022, doi: 10.3390/ma15030744.
dc.relationF. Kaseer, F. Yin, E. Arámbula-Mercado, A. Epps Martin, J. S. Daniel, and S. Salari, "Development of an index to evaluate the cracking potential of asphalt mixtures using the semicircular bending test," Constr Build Mater, vol. 167, pp. 286-298, Apr. 2018, doi: 10.1016/j.conbuildmat.2018.02.014.
dc.relationB. Birgisson, A. Montepara, E. Romeo, R. Roncella, J. A. L. Napier, and G. Tebaldi, "Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures," Eng Fract Mech, vol. 75, no. 3-4, pp. 664-673, Feb. 2008, doi: 10.1016/j.engfracmech.2007.02.003.
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEvaluación de la resistencia al agrietamiento y daño por humedad del mortero asfáltico modificado con lignina
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución