dc.contributor | Rueda Cárdenas, Eduardo José | |
dc.contributor | Caro Spinel, Silvia | |
dc.creator | Castillo Niño, Jairo Alejandro | |
dc.date.accessioned | 2023-08-04T18:51:32Z | |
dc.date.accessioned | 2023-09-07T01:34:23Z | |
dc.date.available | 2023-08-04T18:51:32Z | |
dc.date.available | 2023-09-07T01:34:23Z | |
dc.date.created | 2023-08-04T18:51:32Z | |
dc.date.issued | 2023-08-03 | |
dc.identifier | http://hdl.handle.net/1992/69247 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728469 | |
dc.description.abstract | El aprovechamiento de una sustancia renovable en vez de ligantes asfálticos sería mejor para el medio ambiente. Se investigó reemplazar parcialmente el asfalto con lignina (8 y 14%) para determinar su efecto en el comportamiento a fractura y daño por humedad del mortero asfáltico en distintas condiciones de envejecimiento. Con el propósito de evaluar la resistencia al daño por humedad, se realizó la metodología TSR (Relación de Resistencia a la Tracción). Además, se realizaron pruebas de flexión semicircular (ensayo SCB) para evaluar su resistencia a la fractura frágil. Durante estas pruebas, se utilizaron diferentes índices de fractura, como el Índice de Flexibilidad (FI), el Índice de Resistencia a la Grieta (CRI), la Carga Máxima (Pmax) y la Rigidez (S). Adicionalmente, se realizó un análisis de varianza para conocer la diferencia significativa de los resultados con distintas dosificaciones de lignina. Se observó una mejor resistencia al daño por humedad de los morteros que contenían lignina. Sin embargo, no se pudo concluir la influencia de la lignina en la resistencia a la fisuración de los morteros evaluados. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | S. Xie, Q. Li, P. Karki, F. Zhou, and J. S. Yuan, "Lignin as Renewable and Superior Asphalt
Binder Modifier," ACS Sustain. Chem. Eng., vol. 5, no. 4, pp. 2817-2823, Mar. 2017, doi:
10.1021/acssuschemeng.6b03064 | |
dc.relation | P. Wang, Z. Dong, Y. Tang, and Z. Liu, "Investigating the Interactions of the Saturate, Aromatic,
Resin, and Asphaltene Four Fractions in Asphalt Binders by Molecular Simulations," Energy.
Fuels., vol. 29, no. 1, pp. 112-121, Dec. 2014, doi: 10.1021/ef502172n | |
dc.relation | W. Boerjan, J. Ralph, and M. Baucher, "Lignin Biosynthesis," Annual Review of Plant Biology,
vol. 54. pp. 519-546, 2003. doi: 10.1146/annurev.arplant.54.031902.134938. | |
dc.relation | M. Benali, O. Ajao, J. Jeaidi, and B. Mansoornejad, "Integrated lignin-kraft pulp biorefinery for
the production of lignin and its derivatives: Economic Assessment and LCA-Based
Environmental Footprint," Production of Biofuels and Chemicals from Lignin, pp. 379-418,
Sep. 2016, doi: 10.1007/978-981-10-1965-4_13. | |
dc.relation | D. S. Bajwa, G. Pourhashem, A. H. Ullah, and S. G. Bajwa, "A concise review of current lignin
production, applications, products and their environment impact," Ind Crops Prod, vol. 139,
Nov. 2019, doi: 10.1016/j.indcrop.2019.111526. | |
dc.relation | J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, "The catalytic
valorization of lignin for the production of renewable chemicals," Chem Rev, vol. 110, no. 6,
pp. 3552-3599, Jun. 2010, doi: 10.1021/cr900354u. | |
dc.relation | D. van Vliet, T. Slaghek, C. Giezen, and I. Haaksman, "Lignin as a green alternative for
bitumen," Czech Technical University in Prague - Central Library, Jan. 2017. doi:
10.14311/ee.2016.159. | |
dc.relation | M. Montazeri and M. J. Eckelman, "Life Cycle Assessment of Catechols from Lignin
Depolymerization," ACS Sustain Chem Eng, vol. 4, no. 3, pp. 708-718, Mar. 2016, doi:
10.1021/acssuschemeng.5b00550. | |
dc.relation | P. Wang, Z. Dong, Y. Tan, and Z. Liu, "Next generation applications of lignin derived commodity
products, their life cycle, techno-economics and societal analysis," International Journal of
Biological Macromolecules, vol. 197. Elsevier B.V., pp. 179-200, Feb. 01, 2022. doi:
10.1016/j.ijbiomac.2021.12.146. | |
dc.relation | C. Kou, Z. Chen, A. Kang, M. Zhang, and R. Wang, "Rheological behaviors of asphalt binders
reinforced by various fibers," Constr Build Mater, vol. 323, Mar. 2022, doi:
10.1016/j.conbuildmat.2022.126626. | |
dc.relation | X. Xing et al., "Effect of different fibers on the properties of asphalt mastics," Constr Build Mater, vol. 262, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120005. | |
dc.relation | M. Fakhri and M. A. Norouzi, "Rheological and ageing properties of asphalt bio-binders
containing lignin and waste engine oil," Constr Build Mater, vol. 321, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126364. | |
dc.relation | E. Norgbey et al., "Unravelling the efficient use of waste lignin as a bitumen modifier for
sustainable roads," Constr Build Mater, vol. 230, Jan. 2020, doi:
10.1016/j.conbuildmat.2019.116957. | |
dc.relation | J. Gao, H. Wang, C. Liu, D. Ge, Z. You, and M. Yu, "High-temperature rheological behavior
and fatigue performance of lignin modified asphalt binder," Constr Build Mater, vol. 230, p.
117063, 2020, doi: 10.1016/j.conbuildmat.2019.117063. | |
dc.relation | D. Luo et al., "The performance of asphalt mixtures modified with lignin fiber and glass fiber: A
review," Construction and Building Materials, vol. 209. Elsevier Ltd, pp. 377-387, Jun. 10,
2019. doi: 10.1016/j.conbuildmat.2019.03.126. | |
dc.relation | K. B. Batista et al., "High-temperature, low-temperature and weathering aging performance of
lignin modified asphalt binders," Ind Crops Prod, vol. 111, pp. 107-116, Jan. 2018, doi:
10.1016/j.indcrop.2017.10.010 | |
dc.relation | G. Xu, H. Wang, and H. Zhu, "Rheological properties and anti-aging performance of asphalt
binder modified with wood lignin," Constr Build Mater, vol. 151, pp. 801-808, Oct. 2017, doi:
10.1016/j.conbuildmat.2017.06.151. | |
dc.relation | J. Yu, M. Vaidya, G. Su, S. Adhikari, E. Korolev, and S. Shekhovtsova, "Experimental study of
soda lignin powder as an asphalt modifier for a sustainable pavement material," Constr Build
Mater, vol. 298, Sep. 2021, doi: 10.1016/j.conbuildmat.2021.123884. | |
dc.relation | X. Wu, S. Easa, A. Kang, P. Xiao, Z. Fan, and X. Zheng, "Performance evaluation of lignin-fibre
reinforced asphalt mixture modified by anti-rutting agent," Constr Build Mater, vol. 346, Sep.
2022, doi: 10.1016/j.conbuildmat.2022.128152. | |
dc.relation | Z. Li, K. Li, W. Chen, W. Liu, Y. Yin, and P. Cong, "Investigation on the characteristics and effect
of plant fibers on the properties of asphalt binders," Constr Build Mater, vol. 338, Jul. 2022,
doi: 10.1016/j.conbuildmat.2022.127652. | |
dc.relation | R. Zhang et al., "Lignin structure defines the properties of asphalt binder as a modifier," Constr
Build Mater, vol. 310, Dec. 2021, doi: 10.1016/j.conbuildmat.2021.125156. | |
dc.relation | J. Wu, Q. Liu, C. Wang, W. Wu, and W. Han, "Investigation of lignin as an alternative extender
of bitumen for asphalt pavements," J Clean Prod, vol. 283, Feb. 2021, doi:
10.1016/j.jclepro.2020.124663. | |
dc.relation | D. Hu, X. Gu, G. Wang, Z. Zhou, L. Sun, and J. Pei, "Performance and mechanism of lignin
and quercetin as bio-based anti-aging agents for asphalt binder: A combined experimental
and ab initio study," J Mol Liq, vol. 359, Aug. 2022, doi: 10.1016/j.molliq.2022.119310. | |
dc.relation | B. Wu, Z. Pei, C. Luo, J. Xia, C. Chen, and A. Kang, "¿Effect of different basalt fibers on the
rheological behavior of asphalt mastic," Constr Build Mater, vol. 318, Feb. 2022, doi:
10.1016/j.conbuildmat.2021.125718. | |
dc.relation | A. R. Pasandín, E. Nardi, N. Pérez-Barge, and E. Toraldo, "Valorisation of lignin-rich industrial
byproduct into half-warm mix reclaimed asphalt with enhanced performance," Constr Build
Mater, vol. 315, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125770. | |
dc.relation | S. Arafat, N. Kumar, N. M. Wasiuddin, E. O. Owhe, and J. G. Lynam, "Sustainable lignin to
enhance asphalt binder oxidative aging properties and mix properties," J Clean Prod, vol. 217,
pp. 456-468, 2019, doi: 10.1016/j.jclepro.2019.01.238. | |
dc.relation | L. Espinosa and S. Caro, "Multiscale study of the influence of the volumetric properties and
loading conditions on the fracture properties of hma materials," Universidad de los Andes,
Bogotá D.C., 2019. Accessed: May 09, 2023. [Online]. Available:
https://repositorio.uniandes.edu.co/handle/1992/62449 | |
dc.relation | C. Chen, F. Yin, P. Turner, R. C. West, and N. Tran, "Selecting a laboratory loose mix aging
protocol for the NCAT top-down cracking experiment," Transp Res Rec, vol. 2672, no. 28, pp.
359-371, Jan. 2018, doi: 10.1177/0361198118790639. | |
dc.relation | AASHTO, Standard Method of Resistance of Compacted Asphalt Mixtures to MoistureInduced Damage: Designation T283-21. Washington, D.C.: AASHTO provisional standards,
2021. | |
dc.relation | AASHTO, Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures
Using Semicircular Bend Geometry (SCB) at Intermediate Temperature: Designation TP124-
16. Washington, D.C.: AASHTO provisional standards, 2016. [Online]. Available:
www.matest.ru | |
dc.relation | Q. Lv, J. Lu, X. Tang, Y. Hu, and C. Yan, "Evaluation of the moisture resistance of rubberized
asphalt using BBS/UTM bonding test, TSR and HWT test," Constr Build Mater, vol. 340, Jul.
2022, doi: 10.1016/j.conbuildmat.2022.127831. | |
dc.relation | R. Zhang, J. E. Sias, and E. V. Dave, "Evaluation of the cracking and aging susceptibility of
asphalt mixtures using viscoelastic properties and master curve parameters," Journal of Traffic
and Transportation Engineering (English Edition), vol. 9, no. 1, pp. 106-119, Feb. 2022, doi:
10.1016/j.jtte.2020.09.002. | |
dc.relation | I. P. Pérez, A. M. Rodríguez Pasandín, J. C. Pais, and P. A. Alves Pereira, "Use of lignin
biopolymer from industrial waste as bitumen extender for asphalt mixtures," J Clean Prod, vol.
220, pp. 87-98, May 2019, doi: 10.1016/j.jclepro.2019.02.082. | |
dc.relation | G. Zeng, X. Yang, L. Chen, and F. Bai, "Damage Evolution and Crack Propagation in
Semicircular Bending Asphalt Mixture Specimens," China Acta Mechanica Solida Sinica, vol.
29, no. 6, 2016. | |
dc.relation | M. Zarei, A. Abdi Kordani, and M. Zahedi, "Pure mode I and pure mode II fracture resistance
of modified hot mix asphalt at low and intermediate temperatures," Fatigue Fract Eng Mater
Struct, vol. 44, no. 8, pp. 2222-2243, Aug. 2021, doi: 10.1111/ffe.13508. | |
dc.relation | B. Wu, W. Meng, J. Xia, and P. Xiao, "Influence of Basalt Fibers on the Crack Resistance of
Asphalt Mixtures and Mechanism Analysis," Materials, vol. 15, no. 3, Feb. 2022, doi:
10.3390/ma15030744. | |
dc.relation | F. Kaseer, F. Yin, E. Arámbula-Mercado, A. Epps Martin, J. S. Daniel, and S. Salari,
"Development of an index to evaluate the cracking potential of asphalt mixtures using the semicircular bending test," Constr Build Mater, vol. 167, pp. 286-298, Apr. 2018, doi:
10.1016/j.conbuildmat.2018.02.014. | |
dc.relation | B. Birgisson, A. Montepara, E. Romeo, R. Roncella, J. A. L. Napier, and G. Tebaldi,
"Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures," Eng Fract
Mech, vol. 75, no. 3-4, pp. 664-673, Feb. 2008, doi: 10.1016/j.engfracmech.2007.02.003. | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Evaluación de la resistencia al agrietamiento y daño por humedad del mortero asfáltico modificado con lignina | |
dc.type | Trabajo de grado - Maestría | |