dc.contributorTakahashi Rodríguez, Silvia
dc.contributorTakahashi Rodríguez, Silvia
dc.creatorGonzález Oviedo, Rodrigo José
dc.date.accessioned2023-08-16T13:44:18Z
dc.date.accessioned2023-09-07T01:27:49Z
dc.date.available2023-08-16T13:44:18Z
dc.date.available2023-09-07T01:27:49Z
dc.date.created2023-08-16T13:44:18Z
dc.date.issued2023-08-15
dc.identifierhttp://hdl.handle.net/1992/69749
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728383
dc.description.abstractEl presente trabajo explica detalladamente el funcionamiento de los algoritmos de aprendizaje reforzado, DQN y PPO. Adicionalmente se realiza una comparación entre estos algoritmos utilizando el framework de OpenAI Gym-retro, para entrenar un game agent basado en cada uno de los algoritmos.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationKaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.
dc.relationGym.openai.com. 2016. Gym: A toolkit for developing and comparing reinforcement learning algorithms. [online] Available at: <https://gym.openai.com/docs/> [Accessed 23 December 2021].
dc.relationPfau, V., Nichol, A., Hesse, C., Schiavo, L., Schulman, J. and Klimov, O., 2018. Gym Retro. [online] OpenAI. Available at: <https://openai.com/blog/gym-retro/> [Accessed 25 December 2021].
dc.relationLipovetzky, N., & Sardina, S. (2018). Pacman capture the flag in AI courses. IEEE Transactions on Games, 11(3), 296-299.
dc.relationNichol, A., Pfau, V., Hesse, C., Klimov, O., & Schulman, J. (2018). Gotta learn fast: A new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720.
dc.relationAlemán de León, C. D. Agente Sonic. Deep Reinforcement Learning
dc.relationLeBlanc, D. G., & Lee, G. General Deep Reinforcement Learning in NES Games.
dc.relationBellman, R.E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003: Dover
dc.relationDusparic, I. and Cardozo, N., 2021. ISIS 4222 RL Markov Decision Processes.
dc.relationDusparic, I. and Cardozo, N., 2021. ISIS 4222 RL Q learning.
dc.relationWatkins, C.J.C.H. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge University, Cambridge, England
dc.relationSutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
dc.relationOdemakinde, E., 2022. Model-Based and Model-Free Reinforcement Learning: Pytennis Case Study - neptune.ai. [online] neptune.ai. Available at: <https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytenniscase- study> [Accessed 8 June 2022].
dc.relationSpinningup.openai.com. 2018. Part 2: Kinds of RL Algorithms Spinning Up documentation. [online] Available at: <https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html> [Accessed 7 June 2022].
dc.relationSutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
dc.relationWatkins, Christopher J. C. H., and Peter Dayan. "Q-learning." Machine learning 8.3-4 (1992): 279-292.
dc.relationLin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine learning, 8(3-4):293-321, 1992
dc.relationFedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., & Dabney, W. (2020, November). Revisiting fundamentals of experience replay. In International Conference on Machine Learning (pp. 3061-3071). PMLR.
dc.relationLi, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.
dc.relationMnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
dc.relationSchulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
dc.relationSchulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region policy optimization. In International conference on machine learning (pp. 1889-1897). PMLR.
dc.relationEstes, R. (2020) Rjalnev - DQN, GitHub. Available at: https://github.com/rjalnev (Accessed: 15 December 2021).
dc.rightsAtribución 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnálisis de dos algoritmos de Reinforcement Learning aplicados a OpenAi Gym Retro
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución