dc.contributorPorras Holguín, Niyireth Alicia
dc.contributorArias Tapias, Mary Judith
dc.contributorGarcía Mora, Angela María
dc.contributorSierra Ramírez, Rocío
dc.contributorGrupo de diseño de productos y procesos
dc.creatorUssa Herrera, María Camila
dc.date.accessioned2023-07-27T19:16:11Z
dc.date.accessioned2023-09-07T01:26:55Z
dc.date.available2023-07-27T19:16:11Z
dc.date.available2023-09-07T01:26:55Z
dc.date.created2023-07-27T19:16:11Z
dc.date.issued2023-06-02
dc.identifierhttp://hdl.handle.net/1992/68833
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728366
dc.description.abstractEste documento presenta el desarrollo y caracterización de películas poliméricas a base de cáscara de plátano. La investigación se lleva a cabo en dos partes. En la primera parte, se fabricaron películas con diferentes composiciones de harina de cáscara de plátano como fuente de almidón, con el propósito de entender su comportamiento mediante pruebas mecánicas, físicas y químicas. La segunda parte consiste en la fabricación de películas poliméricas a base de cáscara de plátano en mezcla con PLA. En esta etapa, se evaluaron los efectos sobre las propiedades mecánicas, físicas y químicas de las películas al variar las condiciones de composición y procesamiento.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationJ. Zhai et al., «Degradation and filling modification of plastic waste for improvement of the slurryability of coal-plastic-water slurry», Fuel, vol. 344, p. 128137, jul. 2023, doi: 10.1016/j.fuel.2023.128137.
dc.relationR. Geyer, J. R. Jambeck, y K. L. Law, «Production, use, and fate of all plastics ever made», Science Advances, vol. 3, n.o 7, p. e1700782, jul. 2017, doi: 10.1126/sciadv.1700782.
dc.relationM. M. Owen, E. O. Achukwu, A. Z. Romli, A. H. B. Abdullah, M. H. Ramlee, y S. B. Shuib, «Thermal and mechanical characterization of composite materials from industrial plastic wastes and recycled nylon fibers for floor paving tiles application», Waste Management, vol. 166, pp. 25-34, jul. 2023, doi: 10.1016/j.wasman.2023.04.038.
dc.relation«Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A Review», Advanced Industrial and Engineering Polymer Research, abr. 2023, doi: 10.1016/j.aiepr.2023.04.004.
dc.relationA. Y. Bagastyo, A. D. Anggrainy, y M. S. Maharani Wiguna Hidayat Liang, «Assessment of attitude and participation level among the households and local merchants toward single-use plastic waste management: A case study in Balikpapan Municipality, Indonesia», Case Studies in Chemical and Environmental Engineering, vol. 7, p. 100361, jun. 2023, doi: 10.1016/j.cscee.2023.100361.
dc.relationT. R. Walker, «(Micro)plastics and the UN Sustainable Development Goals», Current Opinion in Green and Sustainable Chemistry, vol. 30, p. 100497, ago. 2021, doi: 10.1016/j.cogsc.2021.100497.
dc.relationM. S. S. R. Tejaswini, P. Pathak, S. Ramkrishna, y P. S. Ganesh, «A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities», Science of The Total Environment, vol. 825, p. 153973, jun. 2022, doi: 10.1016/j.scitotenv.2022.153973.
dc.relationA. Chamas et al., «Degradation Rates of Plastics in the Environment», ACS Sustainable Chem. Eng., vol. 8, n.o 9, pp. 3494-3511, mar. 2020, doi: 10.1021/acssuschemeng.9b06635.
dc.relationM. F. M. Bijmans, C. J. N. Buisman, R. J. W. Meulepas, y P. N. L. Lens, «6.34 - Sulfate Reduction for Inorganic Waste and Process Water Treatment», en Comprehensive Biotechnology (Second Edition), M. Moo-Young, Ed., Burlington: Academic Press, 2011, pp. 435-446. doi: 10.1016/B978-0-08-088504-9.00471-2.
dc.relationG. Twagirayezu, K. Huang, y H. Xia, «Chapter Ten - Effects of bio-contaminants in organic waste products on the soil environment», en Fate of Biological Contaminants During Recycling of Organic Wastes, K. Huang, S. Ahmad Bhat, y G. Cui, Eds., Elsevier, 2023, pp. 187-212. doi: 10.1016/B978-0-323-95998-8.00013-3.
dc.relationP. K. Sadh et al., «Recovery of agricultural waste biomass: A path for circular bioeconomy», Science of The Total Environment, vol. 870, p. 161904, abr. 2023, doi: 10.1016/j.scitotenv.2023.161904.
dc.relationA. J. F. Carvalho, «7 - Starch: Major Sources, Properties and Applications as Thermoplastic Materials», en Handbook of Biopolymers and Biodegradable Plastics, S. Ebnesajjad, Ed., en Plastics Design Library. Boston: William Andrew Publishing, 2013, pp. 129-152. doi: 10.1016/B978-1-4557-2834-3.00007-0.
dc.relationN. Yang et al., «Effects of primary, secondary and tertiary structures on functional properties of thermoplastic starch biopolymer blend films», International Journal of Biological Macromolecules, vol. 236, p. 124006, may 2023, doi: 10.1016/j.ijbiomac.2023.124006.
dc.relationG. H. Robertson, D. W. S. Wong, C. C. Lee, K. Wagschal, M. R. Smith, y W. J. Orts, «Native or Raw Starch Digestion: A Key Step in Energy Efficient Biorefining of Grain», J. Agric. Food Chem., vol. 54, n.o 2, pp. 353-365, ene. 2006, doi: 10.1021/jf051883m.
dc.relationA. A. Koutinas, R. Wang, y C. Webb, «Evaluation of wheat as generic feedstock for chemical production», Industrial Crops and Products, vol. 20, n.o 1, pp. 75-88, jul. 2004, doi: 10.1016/j.indcrop.2003.12.013.
dc.relation«CHEMICALS FROM STARCH», en Starch: Chemistry and Technology, Academic Press, 1984, pp. 389-416. doi: 10.1016/B978-0-12-746270-7.50017-3.
dc.relationD. Garlotta, «A Literature Review of Poly(Lactic Acid)», Journal of Polymers and the Environment, vol. 9, n.o 2, pp. 63-84, abr. 2001, doi: 10.1023/A:1020200822435.
dc.relationH. Liu, F. Xie, L. Yu, L. Chen, y L. Li, «Thermal processing of starch-based polymers», Progress in Polymer Science, vol. 34, n.o 12, pp. 1348-1368, dic. 2009, doi: 10.1016/j.progpolymsci.2009.07.001.
dc.relationS. Ilo, Y. Liu, y E. Berghofer, «Extrusion Cooking of Rice Flour and Amaranth Blends», LWT - Food Science and Technology, vol. 32, n.o 2, pp. 79-88, mar. 1999, doi: 10.1006/fstl.1998.0497.
dc.relationS. Thymi, M. K. Krokida, A. Pappa, y Z. B. Maroulis, «Structural properties of extruded corn starch», Journal of Food Engineering, vol. 68, n.o 4, pp. 519-526, jun. 2005, doi: 10.1016/j.jfoodeng.2004.07.002.
dc.relationA. Y. M. Koh, F. M. Nor, S. Ramesh, y D. Kurniawan, «Plasticisers for edible packaging made of thermoplastic sago starch», Materials Today: Proceedings, may 2023, doi: 10.1016/j.matpr.2023.04.523.
dc.relationD. Rahardiyan, E. M. Moko, J. S. Tan, y C. K. Lee, «Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging A review», Enzyme and Microbial Technology, vol. 168, p. 110260, ago. 2023, doi: 10.1016/j.enzmictec.2023.110260.
dc.relation«2021-06-30 Cifras Sectoriales.pdf». Accedido: 29 de septiembre de 2022. [En línea]. Disponible en: https://sioc.minagricultura.gov.co/Platano/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf#search=platano%202021
dc.relationF. Hernández, Y. Morales, L. Marín, J. Pasqualino, y H. Lambis-Miranda, Extracción de almidón a partir de residuos de piel de plátano. 2015.
dc.relationE. Cabrera Rodríguez, V. León Fernández, A. de la C. Montano Pérez, y D. Dopico Ramírez, «Caracterización de residuos agroindustriales con vistas a su aprovechamiento», Centro Azúcar, vol. 43, n.o 4, pp. 27-35, dic. 2016.
dc.relationK. C. R, Y. A. M, A. M. M, R. O. V, y L. C. Ch, «Residuos agroindustriales su impacto, manejo y aprovechamiento», 1, pp. 122-132, may 2017, doi: 10.24188/recia.v9.nS.2017.530.
dc.relationY. A. V. Corredor y L. I. P. Pérez, «Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente», Revista Facultad de Ciencias Básicas, pp. 59-72, abr. 2018, doi: 10.18359/rfcb.3108.
dc.relation«2018-10-30 Cifras Sectoriales.pdf». Accedido: 15 de diciembre de 2021. [En línea]. Disponible en: https://sioc.minagricultura.gov.co/Platano/Documentos/2018-10-30%20Cifras%20Sectoriales.pdf
dc.relationM. M. Meneses, L. L. Agatón, L. F. M. Gutiérrez, L. E. G. Mendieta, y J. D. Botero, «Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el Departamento de Caldas», Revista Educación en Ingeniería, vol. 5, n.o 9, Art. n.o 9, 2010, doi: 10.26507/rei.v5n9.14.
dc.relationA. F. Rojas, S. Rodríguez-Barona, J. Montoya, A. F. Rojas, S. Rodríguez-Barona, y J. Montoya, «Evaluación de Alternativas de Aprovechamiento Energético y Bioactivo de la Cáscara de Plátano», Información tecnológica, vol. 30, n.o 5, pp. 11-24, oct. 2019, doi: 10.4067/S0718-07642019000500011.
dc.relationA. Aswathi Mohan, A. Robert Antony, K. Greeshma, J.-H. Yun, R. Ramanan, y H.-S. Kim, «Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy», Bioresource Technology, vol. 344, p. 126397, ene. 2022, doi: 10.1016/j.biortech.2021.126397.
dc.relationA. Oberlintner, M. Bajic, G. Kalcíková, B. Likozar, y U. Novak, «Biodegradability study of active chitosan biopolymer films enriched with Quercus polyphenol extract in different soil types», Environmental Technology & Innovation, vol. 21, p. 101318, feb. 2021, doi: 10.1016/j.eti.2020.101318.
dc.relationS. Sharma, V. Sharma, y S. Chatterjee, «Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review», Science of The Total Environment, vol. 875, p. 162627, jun. 2023, doi: 10.1016/j.scitotenv.2023.162627
dc.relationE. Periódico, «Expertos: Contaminación de mares y ríos por plásticos es alarmante en Colombia», elperiodico, 12 de noviembre de 2018. https://www.elperiodico.com/es/medio-ambiente/20181112/contaminacion-mares-rios-plasticos-colombia-7141963 (accedido 15 de diciembre de 2021).
dc.relationG. P. Udayakumar et al., «Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment», Biotechnology Advances, vol. 52, p. 107815, nov. 2021, doi: 10.1016/j.biotechadv.2021.107815.
dc.relationS. Hadimani et al., «Biodegradable hybrid biopolymer film based on carboxy methyl cellulose and selenium nanoparticles with antifungal properties to enhance grapes shelf life», International Journal of Biological Macromolecules, vol. 237, p. 124076, may 2023, doi: 10.1016/j.ijbiomac.2023.124076.
dc.relationG. Nashed, R. P. G. Rutgers, y P. A. Sopade, «The Plasticisation Effect of Glycerol and Water on the Gelatinisation of Wheat Starch», Starch - Stärke, vol. 55, n.o 3-4, pp. 131-137, 2003, doi: 10.1002/star.200390027.
dc.relationP. Liu et al., «Phase transitions of maize starches with different amylose contents in glycerol-water systems», Carbohydrate Polymers, vol. 85, n.o 1, pp. 180-187, abr. 2011, doi: 10.1016/j.carbpol.2011.02.006.
dc.relationY. Zhang, C. Rempel, y D. McLaren, «Chapter 16 - Thermoplastic Starch», en Innovations in Food Packaging (Second Edition), J. H. Han, Ed., en Food Science and Technology. San Diego: Academic Press, 2014, pp. 391-412. doi: 10.1016/B978-0-12-394601-0.00016-3.
dc.relationG. Li, P. Sarazin, y B. D. Favis, «The Relationship between Starch Gelatinization and Morphology Control in Melt-Processed Polymer Blends with Thermoplastic Starch», Macromolecular Chemistry and Physics, vol. 209, n.o 10, pp. 991-1002, 2008, doi: 10.1002/macp.200700637.
dc.relationC. A. Romero-Bastida, L. A. Bello-Pérez, M. A. García, M. N. Martino, J. Solorza-Feria, y N. E. Zaritzky, «Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches», Carbohydrate Polymers, vol. 60, n.o 2, pp. 235-244, may 2005, doi: 10.1016/j.carbpol.2005.01.004
dc.relationF. M. Pelissari, M. M. Andrade-Mahecha, P. J. do A. Sobral, y F. C. Menegalli, «Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca)», Food Hydrocolloids, vol. 30, n.o 2, pp. 681-690, mar. 2013, doi: 10.1016/j.foodhyd.2012.08.007.
dc.relationR. Sothornvit y N. Pitak, «Oxygen permeability and mechanical properties of banana films», Food Research International, vol. 40, n.o 3, pp. 365-370, abr. 2007, doi: 10.1016/j.foodres.2006.10.010.
dc.relationP. Alanís-López, J. Pérez-González, R. Rendón-Villalobos, A. Jiménez-Pérez, y J. Solorza-Feria, «Extrusion and Characterization of Thermoplastic Starch Sheets from "Macho" Banana», Journal of Food Science, vol. 76, n.o 6, pp. E465-E471, 2011, doi: 10.1111/j.1750-3841.2011.02254.x
dc.relationF. M. Pelissari, M. M. Andrade-Mahecha, P. J. do A. Sobral, y F. C. Menegalli, «Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca)», LWT - Food Science and Technology, vol. 52, n.o 1, pp. 1-11, jun. 2013, doi: 10.1016/j.lwt.2013.01.011.
dc.relationR. Venegas, A. Torres, A. M. Rueda, M. A. Morales, M. J. Arias, y A. Porras, «Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films Reinforced with Plantain Fibers», Polymers, vol. 14, n.o 4, Art. n.o 4, ene. 2022, doi: 10.3390/polym14040748.
dc.relationT. J. Gutiérrez, R. Guzmán, C. Medina Jaramillo, y L. Famá, «Effect of beet flour on films made from biological macromolecules: Native and modified plantain flour», International Journal of Biological Macromolecules, vol. 82, pp. 395-403, ene. 2016, doi: 10.1016/j.ijbiomac.2015.10.020.
dc.relationD. Lourdin, H. Bizot, y P. Colonna, "Antiplasticization" in starch-glycerol films?, Journal of Applied Polymer Science, vol. 63, n.o 8, pp. 1047-1053, 1997, doi: 10.1002/(SICI)1097-4628(19970222)63:8<1047::AID-APP11>3.0.CO;2-3.
dc.relationA. Oberlintner, M. Bajic, G. Kalcíková, B. Likozar, y U. Novak, «Biodegradability study of active chitosan biopolymer films enriched with Quercus polyphenol extract in different soil types», Environmental Technology & Innovation, vol. 21, p. 101318, feb. 2021, doi: 10.1016/j.eti.2020.101318.
dc.relationF. A. Mustapha, J. Jai, N. H. Nik Raikhan, Z. I. M. Sharif, y N. M. Yusof, «Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger», Food Control, vol. 99, pp. 106-113, may 2019, doi: 10.1016/j.foodcont.2018.12.042.
dc.relationI. Surya et al., «Augmentation of physico-mechanical, thermal and biodegradability performances of bio-precipitated material reinforced in Eucheuma cottonii biopolymer films», Journal of Materials Research and Technology, vol. 12, pp. 1673-1688, may 2021, doi: 10.1016/j.jmrt.2021.03.055.
dc.relationR. L. Shogren, «Preparation and characterization of a biodegradable mulch: Paper coated with polymerized vegetable oils», Journal of Applied Polymer Science, vol. 73, n.o 11, pp. 2159-2167, 1999, doi: 10.1002/(SICI)1097-4628(19990912)73:11<2159::AID-APP12>3.0.CO;2-Q.
dc.relationJ. P. Maran, V. Sivakumar, K. Thirugnanasambandham, y R. Sridhar, «Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions», Carbohydrate Polymers, vol. 101, pp. 20-28, ene. 2014, doi: 10.1016/j.carbpol.2013.08.080.
dc.relationN. Alqahtani, T. Alnemr, y S. Ali, «Development of low-cost biodegradable films from corn starch and date palm pits (Phoenix dactylifera)», Food Bioscience, vol. 42, p. 101199, ago. 2021, doi: 10.1016/j.fbio.2021.101199.
dc.relationM. Hasan et al., «Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films», International Journal of Biological Macromolecules, vol. 156, pp. 896-905, ago. 2020, doi: 10.1016/j.ijbiomac.2020.04.039.
dc.relationJ. A. García-Ramón et al., «Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis», International Journal of Biological Macromolecules, vol. 187, pp. 35-42, sep. 2021, doi: 10.1016/j.ijbiomac.2021.07.112.
dc.relationZ. Zolek-Tryznowska y J. Holica, «Starch films as an environmentally friendly packaging material: Printing performance», Journal of Cleaner Production, vol. 276, p. 124265, dic. 2020, doi: 10.1016/j.jclepro.2020.124265.
dc.relationL. Godbillot, P. Dole, C. Joly, B. Rogé, y M. Mathlouthi, «Analysis of water binding in starch plasticized films», Food Chemistry, vol. 96, n.o 3, pp. 380-386, jun. 2006, doi: 10.1016/j.foodchem.2005.02.054.
dc.relationN. R. Singha y P. K. Chattopadhyay, «7 - Starch-based blends and composites», en Biodegradable Polymers, Blends and Composites, S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, y M. Ramesh, Eds., en Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing, 2022, pp. 205-236. doi: 10.1016/B978-0-12-823791-5.00006-5.
dc.relationR. A. Talja, H. Helén, Y. H. Roos, y K. Jouppila, «Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films», Carbohydrate Polymers, vol. 67, n.o 3, pp. 288-295, feb. 2007, doi: 10.1016/j.carbpol.2006.05.019.
dc.relationS. Mali, M. V. E. Grossmann, M. A. Garcia, M. N. Martino, y N. E. Zaritzky, «Barrier, mechanical and optical properties of plasticized yam starch films», jun. 2004, doi: 10.1016/j.carbpol.2004.01.004.
dc.relationM. A. García, M. N. Martino, y N. E. Zaritzky, «Microstructural Characterization of Plasticized Starch-Based Films», Starch - Stärke, vol. 52, n.o 4, pp. 118-124, 2000, doi: 10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0.
dc.relationY. V. García-Tejeda et al., «Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage», LWT - Food Science and Technology, vol. 54, n.o 2, pp. 447-455, dic. 2013, doi: 10.1016/j.lwt.2013.05.041.
dc.relationJ. Coreño-Alonso y M. T. Méndez-Bautista, «Relación estructura-propiedades de polímeros», Educación Química, vol. 21, n.o 4, pp. 291-299, oct. 2010, doi: 10.1016/S0187-893X(18)30098-3.
dc.relationC. Barry-Ryan, «10 - Physical and chemical methods for food preservation using natural antimicrobials», en Handbook of Natural Antimicrobials for Food Safety and Quality, T. M. Taylor, Ed., Oxford: Woodhead Publishing, 2015, pp. 211-228. doi: 10.1016/B978-1-78242-034-7.00010-4.
dc.relationS.-D. Zhang, Y.-R. Zhang, J. Zhu, X.-L. Wang, K.-K. Yang, y Y.-Z. Wang, «Modified Corn Starches with Improved Comprehensive Properties for Preparing Thermoplastics», Starch - Stärke, vol. 59, n.o 6, pp. 258-268, 2007, doi: 10.1002/star.200600598.
dc.relationK. D. Tafa, N. Satheesh, y W. Abera, «Mechanical properties of tef starch based edible films: Development and process optimization», Heliyon, p. e13160, ene. 2023, doi: 10.1016/j.heliyon.2023.e13160.
dc.relationJ. Prakash Maran, V. Sivakumar, R. Sridhar, y V. Prince Immanuel, «Development of model for mechanical properties of tapioca starch based edible films», Industrial Crops and Products, vol. 42, pp. 159-168, mar. 2013, doi: 10.1016/j.indcrop.2012.05.011.
dc.relationP. Liu et al., «Phase transitions of maize starches with different amylose contents in glycerol-water systems», Carbohydrate Polymers, vol. 85, n.o 1, pp. 180-187, abr. 2011, doi: 10.1016/j.carbpol.2011.02.006.
dc.relationH. Song, I. Choi, J.-S. Lee, M.-N. Chung, C. S. Yoon, y J. Han, «Comparative study on physicochemical properties of starch films prepared from five sweet potato (Ipomoea batatas) cultivars», International Journal of Biological Macromolecules, vol. 189, pp. 758-767, oct. 2021, doi: 10.1016/j.ijbiomac.2021.08.106.
dc.relationR. Shi et al., «Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending», Carbohydrate Polymers, vol. 69, n.o 4, pp. 748-755, jul. 2007, doi: 10.1016/j.carbpol.2007.02.010.
dc.relationM. L. Sanyang, S. Sapuan, M. Jawaid, M. Ishak, y J. Sahari, «Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch», Polymers, vol. 7, may 2015, doi: 10.3390/polym70x000x.
dc.relationG. Ayala, A. Agudelo, y R. Vargas, «EFFECT OF GLYCEROL ON THE ELECTRICAL PROPERTIES AND PHASE BEHAVIOR OF CASSAVA STARCH BIOPOLYMERS», DYNA, vol. 79, n.o 171, pp. 138-147, feb. 2012.
dc.relationV. O. Bulatovic, V. Mandic, D. Kucic Grgic, y A. Ivancic, «Biodegradable Polymer Blends Based on Thermoplastic Starch», J Polym Environ, vol. 29, n.o 2, pp. 492-508, feb. 2021, doi: 10.1007/s10924-020-01874-w.
dc.relationC. G. T. Neto, J. A. Giacometti, A. E. Job, F. C. Ferreira, J. L. C. Fonseca, y M. R. Pereira, «Thermal Analysis of Chitosan Based Networks», Carbohydrate Polymers, vol. 62, n.o 2, pp. 97-103, nov. 2005, doi: 10.1016/j.carbpol.2005.02.022.
dc.relationY. Zhong y Y. Li, «Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films», Starch - Stärke, vol. 66, n.o 5-6, pp. 524-532, 2014, doi: 10.1002/star.201300202.
dc.relationT. A. Nascimento, V. Calado, y C. W. P. Carvalho, «Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles», Food Research International, vol. 49, n.o 1, pp. 588-595, nov. 2012, doi: 10.1016/j.foodres.2012.07.051.
dc.relationK. M. Dang y R. Yoksan, «Development of thermoplastic starch blown film by incorporating plasticized chitosan», Carbohydrate Polymers, vol. 115, pp. 575-581, ene. 2015, doi: 10.1016/j.carbpol.2014.09.005.
dc.relationV. P. Cyras, M. C. Tolosa Zenklusen, y A. Vazquez, «Relationship between structure and properties of modified potato starch biodegradable films», Journal of Applied Polymer Science, vol. 101, n.o 6, pp. 4313-4319, 2006, doi: 10.1002/app.23924.
dc.relationD. Lourdin, L. Coignard, H. Bizot, y P. Colonna, «Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials», Polymer, vol. 38, n.o 21, pp. 5401-5406, oct. 1997, doi: 10.1016/S0032-3861(97)00082-7.
dc.relationM. A. Shirai, M. V. E. Grossmann, S. Mali, F. Yamashita, P. S. Garcia, y C. M. O. Müller, «Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters», Carbohydrate Polymers, vol. 92, n.o 1, pp. 19-22, ene. 2013, doi: 10.1016/j.carbpol.2012.09.038.
dc.relationR. Yoksan, K. M. Dang, A. Boontanimitr, y S. Chirachanchai, «Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters», International Journal of Biological Macromolecules, vol. 190, pp. 141-150, nov. 2021, doi: 10.1016/j.ijbiomac.2021.08.206.
dc.relationM. Kunarbekova et al., «Biopolymers synthesis and application», Materials Today: Proceedings, mar. 2023, doi: 10.1016/j.matpr.2023.02.367.
dc.relationG. P. Udayakumar et al., «Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment», Biotechnology Advances, vol. 52, p. 107815, nov. 2021, doi: 10.1016/j.biotechadv.2021.107815.
dc.relationR. Turco et al., «Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties», Coatings, vol. 9, n.o 9, Art. n.o 9, sep. 2019, doi: 10.3390/coatings9090574.
dc.relationP. Zarrintaj et al., «Biopolymer-based composites for tissue engineering applications: A basis for future opportunities», Composites Part B: Engineering, vol. 258, p. 110701, jun. 2023, doi: 10.1016/j.compositesb.2023.110701.
dc.relationJ. Wootthikanokkhan et al., «Effect of blending conditions on mechanical, thermal, and rheological properties of plasticized poly(lactic acid)/maleated thermoplastic starch blends», Journal of Applied Polymer Science, vol. 124, n.o 2, pp. 1012-1019, 2012, doi: 10.1002/app.35142.
dc.relation«PLA based biocomposites for sustainable products: A review», Advanced Industrial and Engineering Polymer Research, mar. 2023, doi: 10.1016/j.aiepr.2023.02.002.
dc.relationO. Martin y L. Avérous, «Poly(lactic acid): plasticization and properties of biodegradable multiphase systems», Polymer, vol. 42, n.o 14, pp. 6209-6219, jun. 2001, doi: 10.1016/S0032-3861(01)00086-6.
dc.relationL.-T. Lim, R. Auras, y M. Rubino, «Processing technologies for poly(lactic acid)», Progress in Polymer Science, vol. 33, n.o 8, pp. 820-852, ago. 2008, doi: 10.1016/j.progpolymsci.2008.05.004.
dc.relationA. Przybytek, M. Sienkiewicz, J. Kucinska-Lipka, y H. Janik, «Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions», Industrial Crops and Products, vol. 122, pp. 375-383, oct. 2018, doi: 10.1016/j.indcrop.2018.06.016.
dc.relation«Biaxial Orientation of Polylactide/Thermoplastic Starch Blends». https://www.degruyter.com/document/doi/10.3139/217.2070/html (accedido 24 de mayo de 2023).
dc.relationP. Chotiprayon, B. Chaisawad, y R. Yoksan, «Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres», International Journal of Biological Macromolecules, vol. 156, pp. 960-968, ago. 2020, doi: 10.1016/j.ijbiomac.2020.04.121.
dc.relationZ. N. Diyana, R. Jumaidin, M. Z. Selamat, y M. S. M. Suan, «Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties», International Journal of Biological Macromolecules, vol. 190, pp. 224-232, nov. 2021, doi: 10.1016/j.ijbiomac.2021.08.201.
dc.relationM. Akrami, I. Ghasemi, H. Azizi, M. Karrabi, y M. Seyedabadi, «A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends», Carbohydrate Polymers, vol. 144, pp. 254-262, jun. 2016, doi: 10.1016/j.carbpol.2016.02.035.
dc.relation«Crystallization Behavior of Carbon Nanotube-Polylactide Nanocomposites | Macromolecules». https://pubs.acs.org/doi/abs/10.1021/ma200842n (accedido 24 de mayo de 2023).
dc.relationT. Tábi, T. Ageyeva, y J. G. Kovács, «The influence of nucleating agents, plasticizers, and molding conditions on the properties of injection molded PLA products», Materials Today Communications, vol. 32, p. 103936, ago. 2022, doi: 10.1016/j.mtcomm.2022.103936.
dc.relationT. Dong et al., «Thermal and barrier properties of stretched and annealed polylactide films», Polym. Sci. Ser. A, vol. 57, n.o 6, pp. 738-746, nov. 2015, doi: 10.1134/S0965545X15060073.
dc.relationS. Mali, L. S. Sakanaka, F. Yamashita, y M. V. E. Grossmann, «Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect», Carbohydrate Polymers, vol. 60, n.o 3, pp. 283-289, may 2005, doi: 10.1016/j.carbpol.2005.01.003.
dc.relationP. Müller et al., «Interactions, structure and properties in PLA/plasticized starch blends», Polymer, vol. 103, pp. 9-18, oct. 2016, doi: 10.1016/j.polymer.2016.09.031.
dc.relationH. Sadeghi Ghari y H. Nazockdast, «Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked "TPS+EVA" ternary blends», Polymer, vol. 245, p. 124729, abr. 2022, doi: 10.1016/j.polymer.2022.124729.
dc.relationS. H. Clasen, C. M. O. Müller, y A. T. N. Pires, «Maleic Anhydride as a Compatibilizer and Plasticizer in TPS/PLA Blends», J. Braz. Chem. Soc., vol. 26, pp. 1583-1590, ago. 2015, doi: 10.5935/0103-5053.20150126.
dc.relation«Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride | Biomacromolecules». https://pubs-acs-org.ezproxy.uniandes.edu.co/doi/10.1021/bm0400022 (accedido 14 de febrero de 2023).
dc.relationM. A. Huneault y H. Li, «Morphology and properties of compatibilized polylactide/thermoplastic starch blends», Polymer, vol. 48, n.o 1, pp. 270-280, ene. 2007, doi: 10.1016/j.polymer.2006.11.023.
dc.relationM. M. F. Ferrarezi, M. de Oliveira Taipina, L. C. Escobar da Silva, y M. do C. Gonçalves, «Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends», J Polym Environ, vol. 21, n.o 1, pp. 151-159, mar. 2013, doi: 10.1007/s10924-012-0480-z.
dc.relationM. A. Shirai, C. M. O. Müller, M. V. E. Grossmann, y F. Yamashita, «Adipate and Citrate Esters as Plasticizers for Poly(Lactic Acid)/Thermoplastic Starch Sheets», J Polym Environ, vol. 23, n.o 1, pp. 54-61, mar. 2015, doi: 10.1007/s10924-014-0680-9.
dc.relationP. G. Seligra, C. Medina Jaramillo, L. Famá, y S. Goyanes, «Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent», Carbohydrate Polymers, vol. 138, pp. 66-74, mar. 2016, doi: 10.1016/j.carbpol.2015.11.041.
dc.relationE. Basiak, A. Lenart, y F. Debeaufort, «How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films», Polymers, vol. 10, n.o 4, Art. n.o 4, abr. 2018, doi: 10.3390/polym10040412.
dc.relation«Effects of Water on the Properties of Thermoplastic Starch Poly(lactic acid) Blend Containing Citric Acid - Wang Ning, Zhang Xingxiang, Han Na, Fang Jianming, 2010». https://journals.sagepub.com/doi/abs/10.1177/0892705708096549?journalCode=jtca (accedido 14 de febrero de 2023).
dc.relationA. J. Garcia-Brand et al., «Bioactive Poly(lactic acid) Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization», Polymers, vol. 13, n.o 21, Art. n.o 21, ene. 2021, doi: 10.3390/polym13213707.
dc.relationS. M. Al-Salem, P. Lettieri, y J. Baeyens, «Recycling and recovery routes of plastic solid waste (PSW): A review», Waste Management, vol. 29, n.o 10, pp. 2625-2643, oct. 2009, doi: 10.1016/j.wasman.2009.06.004.
dc.relationR. Yoksan, A. Boontanimitr, N. Klompong, y T. Phothongsurakun, «Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass», International Journal of Biological Macromolecules, vol. 203, pp. 369-378, abr. 2022, doi: 10.1016/j.ijbiomac.2022.01.159.
dc.relationC. Charutigon, J. Jitpupakdree, P. Namsree, y V. Rungsardthong, «Effects of processing conditions and the use of modified starch and monoglyceride on some properties of extruded rice vermicelli», LWT - Food Science and Technology, vol. 41, n.o 4, pp. 642-651, may 2008, doi: 10.1016/j.lwt.2007.04.009.
dc.relationJ. M. Hashimoto y M. V. E. Grossmann, «Effects of extrusion conditions on quality of cassava bran/cassava starch extrudates», International Journal of Food Science & Technology, vol. 38, n.o 5, pp. 511-517, 2003, doi: 10.1046/j.1365-2621.2003.00700.x.
dc.relationM. del R. Salazar-Sánchez, B. Immirzi, J. F. Solanilla-Duque, D. Zannini, M. Malinconico, y G. Santagata, «Ulomoides dermestoides Coleopteran action on Thermoplastic Starch/Poly(lactic acid) films biodegradation: a novel, challenging and sustainable approach for a fast mineralization process», Carbohydrate Polymers, vol. 279, p. 118989, mar. 2022, doi: 10.1016/j.carbpol.2021.118989.
dc.relationH. L. Calambás Pulgarin, C. Caicedo, y E. F. López, «Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends», Heliyon, vol. 8, n.o 10, p. e10833, oct. 2022, doi: 10.1016/j.heliyon.2022.e10833.
dc.relationB. Palai, M. Biswal, S. Mohanty, y S. K. Nayak, «In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof», Industrial Crops and Products, vol. 141, p. 111748, dic. 2019, doi: 10.1016/j.indcrop.2019.111748.
dc.relationN. Wang, J. Yu, y X. Ma, «Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion», Polymer International, vol. 56, n.o 11, pp. 1440-1447, 2007, doi: 10.1002/pi.2302.
dc.relationP. Jullanun y R. Yoksan, «Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites», Polymer Testing, vol. 88, p. 106522, ago. 2020, doi: 10.1016/j.polymertesting.2020.106522.
dc.relation«Thermal and Morphological Characterization of Native and Plasticized Starches of Sweet Potato (Ipomoea batatas) and Diamante Yam (Dioscorea rotundata) | SpringerLink». https://link.springer.com/article/10.1007/s10924-020-01898-2 (accedido 15 de septiembre de 2022).
dc.relationA. Fonseca-García, E. J. Jiménez-Regalado, y R. Y. Aguirre-Loredo, «Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers», Carbohydrate Polymers, vol. 251, p. 117009, ene. 2021, doi: 10.1016/j.carbpol.2020.117009.
dc.relationR. Kizil, J. Irudayaraj, y K. Seetharaman, «Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy», J. Agric. Food Chem., vol. 50, n.o 14, pp. 3912-3918, jul. 2002, doi: 10.1021/jf011652p.
dc.relationH. Li y M. A. Huneault, «Effect of chain extension on the properties of PLA/TPS blends», Journal of Applied Polymer Science, vol. 122, n.o 1, pp. 134-141, 2011, doi: 10.1002/app.33981.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDevelopment and characterization of polymeric films based on banana peel flour
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución