dc.contributor | Carazzone, Chiara | |
dc.contributor | Rivas Hernández, Ricardo Eusebio | |
dc.contributor | Garzón Méndez, William Fernando | |
dc.contributor | Laboratory of advanced analytical techniques in natural products | |
dc.creator | Mutis González, Juan Sebastián | |
dc.date.accessioned | 2024-01-08 | |
dc.date.accessioned | 2023-09-07T01:25:35Z | |
dc.date.available | 2024-01-08 | |
dc.date.available | 2023-09-07T01:25:35Z | |
dc.date.created | 2024-01-08 | |
dc.date.issued | 2023-06 | |
dc.identifier | http://hdl.handle.net/1992/69453 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728351 | |
dc.description.abstract | En los últimos años, la planta de Cannabis sativa y productos derivados han ganado una gran relevancia a nivel social, económico y científico. Es por esto por lo que se ha dado una mayor flexibilización en las legislaciones a nivel mundial de manera que, los pacientes y consumidores puedan tener un acceso seguro y regulado a los diferentes productos. En este contexto, se ha destacado la necesidad de crear métodos de análisis químicos específicos para Cannabis por parte de los laboratorios. Esta tesis tiene como objetivo validar métodos de análisis de cannabinoides y terpenoides en inflorescencias de Cannabis sativa mediante HPLC-DAD y HS-GC-MS respectivamente, de manera que puedan ser utilizados en un análisis de rutina. Para esto, fue necesario de una cuidadosa optimización de los métodos cromatográficos, los parámetros de extracción, cuantificación y el uso de una mezcla de 7 variedades distintas de Cannabis en busca de obtener resultados representativos. El método desarrollado por HS-GC-MS se caracteriza por su elevada automatización, en dónde el analista sólo interviene en el pretratamiento de las inflorescencias. Un total de 34 terpenoides fueron validados satisfactoriamente, cumpliendo un amplio rango de linealidad, una buena selectividad, precisión y exactitud. Por otro lado, el método desarrollado por HPLC-DAD permite la identificación simultánea de 10 cannabinoides recurrentes en Cannabis en tan solo 7 minutos, lo cual permite que el laboratorio analice muestras con una alta eficiencia. De acuerdo con el proceso de validación se encontró que el método cumple con los parámetros de linealidad, selectividad, precisión y exactitud. Adicionalmente, el límite de cuantificación del método cumple con las necesidades fiscales para la cuantificación total de THC (1% p/p). | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | Pollio, A. The Name of Cannabis¿: A Short Guide for Nonbotanists. Cannabis Cannabinoid Res. 2016, 1 (1), 234¿238. https://doi.org/10.1089/can.2016.0027 | |
dc.relation | Russo, E. B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. In Advances in Pharmacology; Elsevier, 2017; Vol. 80, pp 67¿134. https://doi.org/10.1016/bs.apha.2017.03.004 | |
dc.relation | Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J. F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23 (7), 101301. https://doi.org/10.1016/j.isci.2020.101301 | |
dc.relation | McPartland, J. M.; MacDonald, C.; Young, M.; Grant, P. S.; Furkert, D. P.; Glass, M. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two. Cannabis Cannabinoid Res. 2017, 2 (1), 87¿95. https://doi.org/10.1089/can.2016.0032 | |
dc.relation | Suárez-Jacobo, Á.; Díaz Pacheco, A.; Bonales-Alatorre, E.; Castillo-Herrera, G. A.; García-Fajardo, J. A. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023, 28 (7), 2895. https://doi.org/10.3390/molecules28072895 | |
dc.relation | Mudge, E. M.; Brown, P. N. Determination of Cannabinoids in Cannabis Sativa Dried Flowers and Oils by LC-UV: Single-Laboratory Validation, First Action 2018.10. J. AOAC Int. 2020, 103 (2), 489¿493. https://doi.org/10.5740/jaoacint.19-0197 | |
dc.relation | Upton, R.; Craker, L.; ElSohly, M.; Romm, A.; Russo, E.; Sexton, M.; American Herbal Pharmacopoeia. Cannabis Inflorescence: Cannabis Spp.¿; Standards of Identity, Analysis, and Quality Control; 2013 | |
dc.relation | Gloss, D. An Overview of Products and Bias in Research. Neurotherapeutics 2015, 12 (4), 731¿734. https://doi.org/10.1007/s13311-015-0370-x | |
dc.relation | Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis Sativa L.: A Comprehensive Review on the Analytical Methodologies for Cannabinoids and Terpenes Characterization. J. Chromatogr. A 2021, 1637, 461864. https://doi.org/10.1016/j.chroma.2020.461864 | |
dc.relation | Hazekamp, A.; Tejkalová, K.; Papadimitriou, S. Cannabis: From Cultivar to Chemovar II¿A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 2016, 1 (1), 202¿215. https://doi.org/10.1089/can.2016.0017 | |
dc.relation | Sarma, N. D.; Waye, A.; ElSohly, M. A.; Brown, P. N.; Elzinga, S.; Johnson, H. E.; Marles, R. J.; Melanson, J. E.; Russo, E.; Deyton, L.; Hudalla, C.; Vrdoljak, G. A.; Wurzer, J. H.; Khan, I. A.; Kim, N.-C.; Giancaspro, G. I. Cannabis Inflorescence for Medical Purposes: USP Considerations for Quality Attributes. J. Nat. Prod. 2020, 83 (4), 1334¿1351. https://doi.org/10.1021/acs.jnatprod.9b01200 | |
dc.relation | Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10 (1), 3309. https://doi.org/10.1038/s41598-020-60172-6 | |
dc.relation | Thomas, R. J. Measuring Heavy Metal Contaminants in Cannabis and Hemp, First edition.; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2020 | |
dc.relation | Tahir, M. N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J. F. The Biosynthesis of the Cannabinoids. J. Cannabis Res. 2021, 3 (1), 7. https://doi.org/10.1186/s42238-021-00062-4 | |
dc.relation | Booth, J. K.; Yuen, M. M. S.; Jancsik, S.; Madilao, L. L.; Page, J. E.; Bohlmann, J. Terpene Synthases and Terpene Variation in Cannabis Sativa. Plant Physiol. 2020, 184 (1), 130¿147. https://doi.org/10.1104/pp.20.00593 | |
dc.relation | ICH Harmonized Guideline. Validation of Analytical Procedures Q2(R2) Draft Version (2022) | |
dc.relation | Shapira, A.; Berman, P.; Futoran, K.; Guberman, O.; Meiri, D. Tandem Mass Spectrometric Quantification of 93 Terpenoids in Cannabis Using Static Headspace Injections. Anal. Chem. 2019, 91 (17), 11425¿11432. https://doi.org/10.1021/acs.analchem.9b02844 | |
dc.relation | Cannabis Laboratory Fundamentals; Opie, S. R., Ed.; Springer International Publishing: Cham, 2021. https://doi.org/10.1007/978-3-030-62716-4 | |
dc.relation | Sommano, S. R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25 (24), 5792. https://doi.org/10.3390/molecules25245792 | |
dc.relation | Hanu¿, L. O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3 (1), 25¿60. https://doi.org/10.1159/000509733 | |
dc.relation | Santiago, M.; Sachdev, S.; Arnold, J. C.; McGregor, I. S.; Connor, M. Absence of Entourage: Terpenoids Commonly Found in Cannabis Sativa Do Not Modulate the Functional Activity of ¿ 9 -THC at Human CB 1 and CB 2 Receptors. Cannabis Cannabinoid Res. 2019, 4 (3), 165¿176. https://doi.org/10.1089/can.2019.0016 | |
dc.relation | Commissioner, O. of the. FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD). FDA 2021 | |
dc.relation | Nahar, L.; Onder, A.; Sarker, S. D. A Review on the Recent Advances in HPLC, UHPLC and UPLC Analyses of Naturally Occurring Cannabinoids (2010¿2019). Phytochem. Anal. 2020, 31 (4), 413¿457. https://doi.org/10.1002/pca.2906 | |
dc.relation | Chayasirisobhon, S. Mechanisms of Action and Pharmacokinetics of Cannabis. Perm. J. 2021, 25 (1), 1¿3. https://doi.org/10.7812/TPP/19.200 | |
dc.relation | United Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products (Revised and Updated): Manual for Use by National Drug Analysis Laboratories.; UN: New York, 2009 | |
dc.relation | Atkins, P. L. Sample Processing and Preparation Considerations for Solid Cannabis Products. J. AOAC Int. 2019, 102 (2), 427¿433. https://doi.org/10.5740/jaoacint.18-0203 | |
dc.relation | Uziel, A.; Milay, L.; Procaccia, S.; Cohen, R.; Burstein, A.; Sulimani, L.; Shreiber-Livne, I.; Lewitus, D.; Meiri, D. Solid-State Microwave Drying for Medical Cannabis Inflorescences: A Rapid and Controlled Alternative to Traditional Drying. Cannabis Cannabinoid Res. 2022, can.2022.0051. https://doi.org/10.1089/can.2022.0051 | |
dc.relation | Wakshlag, J. J.; Cital, S.; Eaton, S. J.; Prussin, R.; Hudalla, C. Cannabinoid, Terpene, and Heavy Metal Analysis of 29 Over-the-Counter Commercial Veterinary Hemp Supplements. Vet. Med. Res. Rep. 2020, Volume 11, 45¿55. https://doi.org/10.2147/VMRR.S248712 | |
dc.relation | Bowen, J. K.; Chaparro, J. M.; McCorkle, A. M.; Palumbo, E.; Prenni, J. E. The Impact of Extraction Protocol on the Chemical Profile of Cannabis Extracts from a Single Cultivar. Sci. Rep. 2021, 11 (1), 21801. https://doi.org/10.1038/s41598-021-01378-0 | |
dc.relation | Lazarjani, M. P.; Young, O.; Kebede, L.; Seyfoddin, A. Processing and Extraction Methods of Medicinal Cannabis: A Narrative Review. J. Cannabis Res. 2021, 3 (1), 32. https://doi.org/10.1186/s42238-021-00087-9 | |
dc.relation | Nie, B.; Henion, J.; Ryona, I. The Role of Mass Spectrometry in the Cannabis Industry. J. Am. Soc. Mass Spectrom. 2019, 30 (5), 719¿730. https://doi.org/10.1007/s13361-019-02164-z | |
dc.relation | Vas, G. State of the Art Solventless Sample Preparation Alternatives for Analytical Evaluation of the Volatile Constituents of Different Cannabis Based Products. In Comprehensive Analytical Chemistry; Elsevier, 2020; Vol. 90, pp 105¿137. https://doi.org/10.1016/bs.coac.2020.04.012 | |
dc.relation | Polito, J. T.; Lange, B. M. Standard Operating Procedures for the Comprehensive and Reliable Analysis of Cannabis Terpenes. In Methods in Enzymology; Elsevier, 2023; Vol. 680, pp 381¿419. https://doi.org/10.1016/bs.mie.2022.07.029 | |
dc.relation | Markelov, M.; Guzowski, J. P. Matrix Independent Headspace Gas Chromatographic Analysis. This Full Evaporation Technique. Anal. Chim. Acta 1993, 276 (2), 235¿245. https://doi.org/10.1016/0003-2670(93)80390-7 | |
dc.relation | Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a New Extraction Technique and HPLC Method for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis Sativa L. (Hemp). J. Pharm. Biomed. Anal. 2017, 143, 228¿236. https://doi.org/10.1016/j.jpba.2017.05.049 | |
dc.relation | Gallo-Molina, A. C.; Castro-Vargas, H. I.; Garzón-Méndez, W. F.; Martínez Ramírez, J. A.; Rivera Monroy, Z. J.; King, J. W.; Parada-Alfonso, F. Extraction, Isolation and Purification of Tetrahydrocannabinol from the Cannabis Sativa L. Plant Using Supercritical Fluid Extraction and Solid Phase Extraction. J. Supercrit. Fluids 2019, 146, 208¿216. https://doi.org/10.1016/j.supflu.2019.01.020 | |
dc.relation | Zeki¿, J.; Kri¿man, M. Development of Gas-Chromatographic Method for Simultaneous Determination of Cannabinoids and Terpenes in Hemp. Molecules 2020, 25 (24), 5872. https://doi.org/10.3390/molecules25245872 | |
dc.relation | Bakro, F.; Jedryczka, M.; Wielgusz, K.; Sgorbini, B.; Inchingolo, R.; Cardenia, V. Simultaneous Determination of Terpenes and Cannabidiol in Hemp ( Cannabis Sativa L.) by Fast Gas Chromatography with Flame Ionization Detection. J. Sep. Sci. 2020, 43 (14), 2817¿2826. https://doi.org/10.1002/jssc.201900822. | |
dc.relation | Capetti, F.; Rubiolo, P.; Mastellone, G.; Marengo, A.; Sgorbini, B.; Cagliero, C. A Sustainable Approach for the Reliable and Simultaneous Determination of Terpenoids and Cannabinoids in Hemp Inflorescences by Vacuum Assisted Headspace Solid-Phase Microextraction. Adv. Sample Prep. 2022, 2, 100014. https://doi.org/10.1016/j.sampre.2022.100014 | |
dc.relation | Ley 1787 de 2016. Por Medio de La Cual Se Reglamenta El Acto Legislativo 02 de 2009 En Relación Con La Creación de Un Marco Regulatorio Que Permita El Acceso Seguro e Informado al Uso Médico y Científico Del Cannabis y Sus Derivados En El Territorio Nacional Colombiano. D. O. No. 49926 | |
dc.relation | Wilson, W. B.; Abdur-Rahman, M. Determination of 11 Cannabinoids in Hemp Plant and Oils by Liquid Chromatography and Photodiode Array Detection. Chromatographia 2022, 85 (2), 115¿125. https://doi.org/10.1007/s10337-021-04114-y | |
dc.relation | Decreto 613 de 2017. Por El Cual Se Reglamenta La Ley 1787 de 2016 En Relación Con El Acceso Seguro e Informado al Uso Médico y Científico Del Cannabis. 10 de Abril de 2017. D. O. No. 50202 | |
dc.relation | American Herbal Pharmacopeia. Cannabis Inflorescence. Revision 2014. Https://Herbal_ahp.Org/Online-Ordering-Cannabis-Inflorescence-Qc-Monograph/ | |
dc.relation | ICONTEC NTC 6495. Cannabis. Práctica Estándar Para La Validación de Métodos de Ensayo En Laboratorio y Desarrollo de Métodos (2020) | |
dc.relation | D37 Committee. Standard Practice for Laboratory Test Method Validation and Method Development; ASTM International. https://doi.org/10.1520/D8282-19 | |
dc.relation | Krill, C.; Rochfort, S.; Spangenberg, G. A High-Throughput Method for the Comprehensive Analysis of Terpenes and Terpenoids in Medicinal Cannabis Biomass. Metabolites 2020, 10 (7), 276. https://doi.org/10.3390/metabo10070276 | |
dc.relation | Nguyen, T.-D.; Riordan-Short, S.; Dang, T.-T. T.; O¿Brien, R.; Noestheden, M. Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography¿Mass Spectrometry with High-Temperature Headspace Sampling. ACS Omega 2020, 5 (10), 5565¿5573. https://doi.org/10.1021/acsomega.0c00384 | |
dc.relation | Dei Cas, M.; Arnoldi, S.; Monguzzi, L.; Casagni, E.; Morano, C.; Vieira de Manincor, E.; Bolchi, C.; Pallavicini, M.; Gambaro, V.; Roda, G. Characterization of Chemotype-Dependent Terpenoids Profile in Cannabis by Headspace Gas-Chromatography Coupled to Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2021, 203, 114180. https://doi.org/10.1016/j.jpba.2021.114180 | |
dc.relation | Serafimovska, T.; Serafimovska, M. D.; Mitevska, M.; Stefanovski, S.; Keskovski, Z.; Stefkov, G.; Balkanov, T.; Ribarska, J. T. Determination of Terpenoid Profile in Dry Cannabis Flowers and Extracts Obtained from Different Cannabis Varietes. J. Pharm. Res. Int. 2021, 214¿228. https://doi.org/10.9734/jpri/2021/v33i53B33698 | |
dc.relation | Leardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652 (1¿2), 161¿172. https://doi.org/10.1016/j.aca.2009.06.015 | |
dc.relation | Guthrie, W. F. NIST/SEMATECH e-Handbook of Statistical Methods (NIST Handbook 151), 2020. https://doi.org/10.18434/M32189 | |
dc.relation | Ibrahim, E.; Wang, M.; Radwan, M.; Wanas, A.; Majumdar, C.; Avula, B.; Wang, Y.-H.; Khan, I.; Chandra, S.; Lata, H.; Hadad, G.; Abdel Salam, R.; Ibrahim, A.; Ahmed, S.; ElSohly, M. Analysis of Terpenes in Cannabis Sativa L. Using GC/MS: Method Development, Validation, and Application. Planta Med. 2019, 85 (05), 431¿438. https://doi.org/10.1055/a-0828-8387 | |
dc.relation | Berman, P.; Futoran, K.; Lewitus, G. M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A New ESI-LC/MS Approach for Comprehensive Metabolic Profiling of Phytocannabinoids in Cannabis. Sci. Rep. 2018, 8 (1), 14280. https://doi.org/10.1038/s41598-018-32651-4 | |
dc.relation | Vaniya, A.; Fiehn, O. Using Fragmentation Trees and Mass Spectral Trees for Identifying Unknown Compounds in Metabolomics. TrAC Trends Anal. Chem. 2015, 69, 52¿61. https://doi.org/10.1016/j.trac.2015.04.002 | |
dc.relation | Citti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M. A.; Cannazza, G. Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Front. Plant Sci. 2019, 10, 120. https://doi.org/10.3389/fpls.2019.00120 | |
dc.relation | Hazekamp, A.; Peltenburg, A.; Verpoorte, R.; Giroud, C. Chromatographic and Spectroscopic Data of Cannabinoids from Cannabis Sativa L. J. Liq. Chromatogr. Relat. Technol. 2005, 28 (15), 2361¿2382. https://doi.org/10.1080/10826070500187558 | |
dc.relation | D¿Antonio, S.; Guannan, L.; Macherone, A. Quantitation of Phytocannabinoid Oils Using the Agilent Infinity II 1260 Prime/InfinityLab LC/MSD IQ LC/MS System. Agil. Technol. Inc 2020, Application note 5994-1706 | |
dc.relation | Storm, C.; Zumwalt, M.; Macherone, A. Dedicated Cannabinoid Potency Testing in Cannabis or Hemp Products Using the Agilent 1220 Infinity II LC System. Agil. Technol. Inc 2020, Application note 5991-9285 | |
dc.relation | Whiteley, B.; Long, W. Separation of 16 Cannabinoids Using the Agilent 1260 Infinity II LC System. Agil. Technol. Inc 2022, Application note 5994-5519 | |
dc.relation | Vaclavik, L.; Benes, F.; Fenclova, M.; Hricko, J.; Krmela, A.; Svobodova, V.; Hajslova, J.; Mastovska, K. Quantitation of Cannabinoids in Cannabis Dried Plant Materials, Concentrates, and Oils Using Liquid Chromatography¿Diode Array Detection Technique with Optional Mass Spectrometric Detection: Single-Laboratory Validation Study, First Action 2018.11. J. AOAC Int. 2019, 102 (6), 1822¿1833. https://doi.org/10.5740/jaoacint.18-0426 | |
dc.relation | Song, L.; Carlson, S.; Valenzuela, G.; Chao, M.; Pathipaka, S. B. Development of a Validated Method for Rapid Quantification of up to Sixteen Cannabinoids Using Ultra-High-Performance Liquid Chromatography Diode-Array Detector with Optional Electrospray Ionization Time-of-Flight Mass Spectrometry Detection. J. Chromatogr. A 2022, 1670, 462953. https://doi.org/10.1016/j.chroma.2022.462953 | |
dc.relation | Mandrioli, M.; Tura, M.; Scotti, S.; Gallina Toschi, T. Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis Sativa L. Molecules 2019, 24 (11), 2113. https://doi.org/10.3390/molecules24112113 | |
dc.relation | Blebea, N. M.; Rambu, D.; Costache, T.; Negre¿, S. Very Fast RP¿UHPLC¿PDA Method for Identification and Quantification of the Cannabinoids from Hemp Oil. Appl. Sci. 2021, 11 (20), 9414. https://doi.org/10.3390/app11209414 | |
dc.relation | Burnier, C.; Esseiva, P.; Roussel, C. Quantification of THC in Cannabis Plants by Fast-HPLC-DAD: A Promising Method for Routine Analyses. Talanta 2019, 192, 135¿141. https://doi.org/10.1016/j.talanta.2018.09.012 | |
dc.relation | Büttenbender, S.; Carlos, G.; Steppe, M.; Ortiz, R. S.; Limberger, R. P.; Mendez, A. S. L. Fast and Reliable Profiling of Cannabinoids in Seized Samples Using the Method of HPLC¿DAD Followed by Chemometrics. Forensic Toxicol. 2022, 40 (2), 407¿413. https://doi.org/10.1007/s11419-022-00625-x | |
dc.relation | Giese, M. W.; Lewis, M. A.; Giese, L.; Smith, K. M. Method for the Analysis of Cannabinoids and Terpenes in Cannabis. J. AOAC Int. 2015, 98 (6), 1503¿1522. https://doi.org/10.5740/jaoacint.15-116 | |
dc.relation | Almeida, A. M.; Castel-Branco, M. M.; Falcão, A. C. Linear Regression for Calibration Lines Revisited: Weighting Schemes for Bioanalytical Methods. J. Chromatogr. B 2002, 774 (2), 215¿222. https://doi.org/10.1016/S1570-0232(02)00244-1 | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | Validación de métodos para el análisis de cannabinoides por HPLC-DAD y terpenoides por HS-GC-MS en inflorescencias de Cannabis sativa cultivada en Colombia | |
dc.type | Trabajo de grado - Maestría | |