dc.contributorCarazzone, Chiara
dc.contributorRivas Hernández, Ricardo Eusebio
dc.contributorGarzón Méndez, William Fernando
dc.contributorLaboratory of advanced analytical techniques in natural products
dc.creatorMutis González, Juan Sebastián
dc.date.accessioned2024-01-08
dc.date.accessioned2023-09-07T01:25:35Z
dc.date.available2024-01-08
dc.date.available2023-09-07T01:25:35Z
dc.date.created2024-01-08
dc.date.issued2023-06
dc.identifierhttp://hdl.handle.net/1992/69453
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728351
dc.description.abstractEn los últimos años, la planta de Cannabis sativa y productos derivados han ganado una gran relevancia a nivel social, económico y científico. Es por esto por lo que se ha dado una mayor flexibilización en las legislaciones a nivel mundial de manera que, los pacientes y consumidores puedan tener un acceso seguro y regulado a los diferentes productos. En este contexto, se ha destacado la necesidad de crear métodos de análisis químicos específicos para Cannabis por parte de los laboratorios. Esta tesis tiene como objetivo validar métodos de análisis de cannabinoides y terpenoides en inflorescencias de Cannabis sativa mediante HPLC-DAD y HS-GC-MS respectivamente, de manera que puedan ser utilizados en un análisis de rutina. Para esto, fue necesario de una cuidadosa optimización de los métodos cromatográficos, los parámetros de extracción, cuantificación y el uso de una mezcla de 7 variedades distintas de Cannabis en busca de obtener resultados representativos. El método desarrollado por HS-GC-MS se caracteriza por su elevada automatización, en dónde el analista sólo interviene en el pretratamiento de las inflorescencias. Un total de 34 terpenoides fueron validados satisfactoriamente, cumpliendo un amplio rango de linealidad, una buena selectividad, precisión y exactitud. Por otro lado, el método desarrollado por HPLC-DAD permite la identificación simultánea de 10 cannabinoides recurrentes en Cannabis en tan solo 7 minutos, lo cual permite que el laboratorio analice muestras con una alta eficiencia. De acuerdo con el proceso de validación se encontró que el método cumple con los parámetros de linealidad, selectividad, precisión y exactitud. Adicionalmente, el límite de cuantificación del método cumple con las necesidades fiscales para la cuantificación total de THC (1% p/p).
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationPollio, A. The Name of Cannabis¿: A Short Guide for Nonbotanists. Cannabis Cannabinoid Res. 2016, 1 (1), 234¿238. https://doi.org/10.1089/can.2016.0027
dc.relationRusso, E. B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. In Advances in Pharmacology; Elsevier, 2017; Vol. 80, pp 67¿134. https://doi.org/10.1016/bs.apha.2017.03.004
dc.relationShahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J. F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23 (7), 101301. https://doi.org/10.1016/j.isci.2020.101301
dc.relationMcPartland, J. M.; MacDonald, C.; Young, M.; Grant, P. S.; Furkert, D. P.; Glass, M. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two. Cannabis Cannabinoid Res. 2017, 2 (1), 87¿95. https://doi.org/10.1089/can.2016.0032
dc.relationSuárez-Jacobo, Á.; Díaz Pacheco, A.; Bonales-Alatorre, E.; Castillo-Herrera, G. A.; García-Fajardo, J. A. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023, 28 (7), 2895. https://doi.org/10.3390/molecules28072895
dc.relationMudge, E. M.; Brown, P. N. Determination of Cannabinoids in Cannabis Sativa Dried Flowers and Oils by LC-UV: Single-Laboratory Validation, First Action 2018.10. J. AOAC Int. 2020, 103 (2), 489¿493. https://doi.org/10.5740/jaoacint.19-0197
dc.relationUpton, R.; Craker, L.; ElSohly, M.; Romm, A.; Russo, E.; Sexton, M.; American Herbal Pharmacopoeia. Cannabis Inflorescence: Cannabis Spp.¿; Standards of Identity, Analysis, and Quality Control; 2013
dc.relationGloss, D. An Overview of Products and Bias in Research. Neurotherapeutics 2015, 12 (4), 731¿734. https://doi.org/10.1007/s13311-015-0370-x
dc.relationMicalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis Sativa L.: A Comprehensive Review on the Analytical Methodologies for Cannabinoids and Terpenes Characterization. J. Chromatogr. A 2021, 1637, 461864. https://doi.org/10.1016/j.chroma.2020.461864
dc.relationHazekamp, A.; Tejkalová, K.; Papadimitriou, S. Cannabis: From Cultivar to Chemovar II¿A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 2016, 1 (1), 202¿215. https://doi.org/10.1089/can.2016.0017
dc.relationSarma, N. D.; Waye, A.; ElSohly, M. A.; Brown, P. N.; Elzinga, S.; Johnson, H. E.; Marles, R. J.; Melanson, J. E.; Russo, E.; Deyton, L.; Hudalla, C.; Vrdoljak, G. A.; Wurzer, J. H.; Khan, I. A.; Kim, N.-C.; Giancaspro, G. I. Cannabis Inflorescence for Medical Purposes: USP Considerations for Quality Attributes. J. Nat. Prod. 2020, 83 (4), 1334¿1351. https://doi.org/10.1021/acs.jnatprod.9b01200
dc.relationJin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10 (1), 3309. https://doi.org/10.1038/s41598-020-60172-6
dc.relationThomas, R. J. Measuring Heavy Metal Contaminants in Cannabis and Hemp, First edition.; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2020
dc.relationTahir, M. N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J. F. The Biosynthesis of the Cannabinoids. J. Cannabis Res. 2021, 3 (1), 7. https://doi.org/10.1186/s42238-021-00062-4
dc.relationBooth, J. K.; Yuen, M. M. S.; Jancsik, S.; Madilao, L. L.; Page, J. E.; Bohlmann, J. Terpene Synthases and Terpene Variation in Cannabis Sativa. Plant Physiol. 2020, 184 (1), 130¿147. https://doi.org/10.1104/pp.20.00593
dc.relationICH Harmonized Guideline. Validation of Analytical Procedures Q2(R2) Draft Version (2022)
dc.relationShapira, A.; Berman, P.; Futoran, K.; Guberman, O.; Meiri, D. Tandem Mass Spectrometric Quantification of 93 Terpenoids in Cannabis Using Static Headspace Injections. Anal. Chem. 2019, 91 (17), 11425¿11432. https://doi.org/10.1021/acs.analchem.9b02844
dc.relationCannabis Laboratory Fundamentals; Opie, S. R., Ed.; Springer International Publishing: Cham, 2021. https://doi.org/10.1007/978-3-030-62716-4
dc.relationSommano, S. R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25 (24), 5792. https://doi.org/10.3390/molecules25245792
dc.relationHanu¿, L. O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3 (1), 25¿60. https://doi.org/10.1159/000509733
dc.relationSantiago, M.; Sachdev, S.; Arnold, J. C.; McGregor, I. S.; Connor, M. Absence of Entourage: Terpenoids Commonly Found in Cannabis Sativa Do Not Modulate the Functional Activity of ¿ 9 -THC at Human CB 1 and CB 2 Receptors. Cannabis Cannabinoid Res. 2019, 4 (3), 165¿176. https://doi.org/10.1089/can.2019.0016
dc.relationCommissioner, O. of the. FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD). FDA 2021
dc.relationNahar, L.; Onder, A.; Sarker, S. D. A Review on the Recent Advances in HPLC, UHPLC and UPLC Analyses of Naturally Occurring Cannabinoids (2010¿2019). Phytochem. Anal. 2020, 31 (4), 413¿457. https://doi.org/10.1002/pca.2906
dc.relationChayasirisobhon, S. Mechanisms of Action and Pharmacokinetics of Cannabis. Perm. J. 2021, 25 (1), 1¿3. https://doi.org/10.7812/TPP/19.200
dc.relationUnited Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products (Revised and Updated): Manual for Use by National Drug Analysis Laboratories.; UN: New York, 2009
dc.relationAtkins, P. L. Sample Processing and Preparation Considerations for Solid Cannabis Products. J. AOAC Int. 2019, 102 (2), 427¿433. https://doi.org/10.5740/jaoacint.18-0203
dc.relationUziel, A.; Milay, L.; Procaccia, S.; Cohen, R.; Burstein, A.; Sulimani, L.; Shreiber-Livne, I.; Lewitus, D.; Meiri, D. Solid-State Microwave Drying for Medical Cannabis Inflorescences: A Rapid and Controlled Alternative to Traditional Drying. Cannabis Cannabinoid Res. 2022, can.2022.0051. https://doi.org/10.1089/can.2022.0051
dc.relationWakshlag, J. J.; Cital, S.; Eaton, S. J.; Prussin, R.; Hudalla, C. Cannabinoid, Terpene, and Heavy Metal Analysis of 29 Over-the-Counter Commercial Veterinary Hemp Supplements. Vet. Med. Res. Rep. 2020, Volume 11, 45¿55. https://doi.org/10.2147/VMRR.S248712
dc.relationBowen, J. K.; Chaparro, J. M.; McCorkle, A. M.; Palumbo, E.; Prenni, J. E. The Impact of Extraction Protocol on the Chemical Profile of Cannabis Extracts from a Single Cultivar. Sci. Rep. 2021, 11 (1), 21801. https://doi.org/10.1038/s41598-021-01378-0
dc.relationLazarjani, M. P.; Young, O.; Kebede, L.; Seyfoddin, A. Processing and Extraction Methods of Medicinal Cannabis: A Narrative Review. J. Cannabis Res. 2021, 3 (1), 32. https://doi.org/10.1186/s42238-021-00087-9
dc.relationNie, B.; Henion, J.; Ryona, I. The Role of Mass Spectrometry in the Cannabis Industry. J. Am. Soc. Mass Spectrom. 2019, 30 (5), 719¿730. https://doi.org/10.1007/s13361-019-02164-z
dc.relationVas, G. State of the Art Solventless Sample Preparation Alternatives for Analytical Evaluation of the Volatile Constituents of Different Cannabis Based Products. In Comprehensive Analytical Chemistry; Elsevier, 2020; Vol. 90, pp 105¿137. https://doi.org/10.1016/bs.coac.2020.04.012
dc.relationPolito, J. T.; Lange, B. M. Standard Operating Procedures for the Comprehensive and Reliable Analysis of Cannabis Terpenes. In Methods in Enzymology; Elsevier, 2023; Vol. 680, pp 381¿419. https://doi.org/10.1016/bs.mie.2022.07.029
dc.relationMarkelov, M.; Guzowski, J. P. Matrix Independent Headspace Gas Chromatographic Analysis. This Full Evaporation Technique. Anal. Chim. Acta 1993, 276 (2), 235¿245. https://doi.org/10.1016/0003-2670(93)80390-7
dc.relationBrighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a New Extraction Technique and HPLC Method for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis Sativa L. (Hemp). J. Pharm. Biomed. Anal. 2017, 143, 228¿236. https://doi.org/10.1016/j.jpba.2017.05.049
dc.relationGallo-Molina, A. C.; Castro-Vargas, H. I.; Garzón-Méndez, W. F.; Martínez Ramírez, J. A.; Rivera Monroy, Z. J.; King, J. W.; Parada-Alfonso, F. Extraction, Isolation and Purification of Tetrahydrocannabinol from the Cannabis Sativa L. Plant Using Supercritical Fluid Extraction and Solid Phase Extraction. J. Supercrit. Fluids 2019, 146, 208¿216. https://doi.org/10.1016/j.supflu.2019.01.020
dc.relationZeki¿, J.; Kri¿man, M. Development of Gas-Chromatographic Method for Simultaneous Determination of Cannabinoids and Terpenes in Hemp. Molecules 2020, 25 (24), 5872. https://doi.org/10.3390/molecules25245872
dc.relationBakro, F.; Jedryczka, M.; Wielgusz, K.; Sgorbini, B.; Inchingolo, R.; Cardenia, V. Simultaneous Determination of Terpenes and Cannabidiol in Hemp ( Cannabis Sativa L.) by Fast Gas Chromatography with Flame Ionization Detection. J. Sep. Sci. 2020, 43 (14), 2817¿2826. https://doi.org/10.1002/jssc.201900822.
dc.relationCapetti, F.; Rubiolo, P.; Mastellone, G.; Marengo, A.; Sgorbini, B.; Cagliero, C. A Sustainable Approach for the Reliable and Simultaneous Determination of Terpenoids and Cannabinoids in Hemp Inflorescences by Vacuum Assisted Headspace Solid-Phase Microextraction. Adv. Sample Prep. 2022, 2, 100014. https://doi.org/10.1016/j.sampre.2022.100014
dc.relationLey 1787 de 2016. Por Medio de La Cual Se Reglamenta El Acto Legislativo 02 de 2009 En Relación Con La Creación de Un Marco Regulatorio Que Permita El Acceso Seguro e Informado al Uso Médico y Científico Del Cannabis y Sus Derivados En El Territorio Nacional Colombiano. D. O. No. 49926
dc.relationWilson, W. B.; Abdur-Rahman, M. Determination of 11 Cannabinoids in Hemp Plant and Oils by Liquid Chromatography and Photodiode Array Detection. Chromatographia 2022, 85 (2), 115¿125. https://doi.org/10.1007/s10337-021-04114-y
dc.relationDecreto 613 de 2017. Por El Cual Se Reglamenta La Ley 1787 de 2016 En Relación Con El Acceso Seguro e Informado al Uso Médico y Científico Del Cannabis. 10 de Abril de 2017. D. O. No. 50202
dc.relationAmerican Herbal Pharmacopeia. Cannabis Inflorescence. Revision 2014. Https://Herbal_ahp.Org/Online-Ordering-Cannabis-Inflorescence-Qc-Monograph/
dc.relationICONTEC NTC 6495. Cannabis. Práctica Estándar Para La Validación de Métodos de Ensayo En Laboratorio y Desarrollo de Métodos (2020)
dc.relationD37 Committee. Standard Practice for Laboratory Test Method Validation and Method Development; ASTM International. https://doi.org/10.1520/D8282-19
dc.relationKrill, C.; Rochfort, S.; Spangenberg, G. A High-Throughput Method for the Comprehensive Analysis of Terpenes and Terpenoids in Medicinal Cannabis Biomass. Metabolites 2020, 10 (7), 276. https://doi.org/10.3390/metabo10070276
dc.relationNguyen, T.-D.; Riordan-Short, S.; Dang, T.-T. T.; O¿Brien, R.; Noestheden, M. Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography¿Mass Spectrometry with High-Temperature Headspace Sampling. ACS Omega 2020, 5 (10), 5565¿5573. https://doi.org/10.1021/acsomega.0c00384
dc.relationDei Cas, M.; Arnoldi, S.; Monguzzi, L.; Casagni, E.; Morano, C.; Vieira de Manincor, E.; Bolchi, C.; Pallavicini, M.; Gambaro, V.; Roda, G. Characterization of Chemotype-Dependent Terpenoids Profile in Cannabis by Headspace Gas-Chromatography Coupled to Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2021, 203, 114180. https://doi.org/10.1016/j.jpba.2021.114180
dc.relationSerafimovska, T.; Serafimovska, M. D.; Mitevska, M.; Stefanovski, S.; Keskovski, Z.; Stefkov, G.; Balkanov, T.; Ribarska, J. T. Determination of Terpenoid Profile in Dry Cannabis Flowers and Extracts Obtained from Different Cannabis Varietes. J. Pharm. Res. Int. 2021, 214¿228. https://doi.org/10.9734/jpri/2021/v33i53B33698
dc.relationLeardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652 (1¿2), 161¿172. https://doi.org/10.1016/j.aca.2009.06.015
dc.relationGuthrie, W. F. NIST/SEMATECH e-Handbook of Statistical Methods (NIST Handbook 151), 2020. https://doi.org/10.18434/M32189
dc.relationIbrahim, E.; Wang, M.; Radwan, M.; Wanas, A.; Majumdar, C.; Avula, B.; Wang, Y.-H.; Khan, I.; Chandra, S.; Lata, H.; Hadad, G.; Abdel Salam, R.; Ibrahim, A.; Ahmed, S.; ElSohly, M. Analysis of Terpenes in Cannabis Sativa L. Using GC/MS: Method Development, Validation, and Application. Planta Med. 2019, 85 (05), 431¿438. https://doi.org/10.1055/a-0828-8387
dc.relationBerman, P.; Futoran, K.; Lewitus, G. M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A New ESI-LC/MS Approach for Comprehensive Metabolic Profiling of Phytocannabinoids in Cannabis. Sci. Rep. 2018, 8 (1), 14280. https://doi.org/10.1038/s41598-018-32651-4
dc.relationVaniya, A.; Fiehn, O. Using Fragmentation Trees and Mass Spectral Trees for Identifying Unknown Compounds in Metabolomics. TrAC Trends Anal. Chem. 2015, 69, 52¿61. https://doi.org/10.1016/j.trac.2015.04.002
dc.relationCitti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M. A.; Cannazza, G. Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Front. Plant Sci. 2019, 10, 120. https://doi.org/10.3389/fpls.2019.00120
dc.relationHazekamp, A.; Peltenburg, A.; Verpoorte, R.; Giroud, C. Chromatographic and Spectroscopic Data of Cannabinoids from Cannabis Sativa L. J. Liq. Chromatogr. Relat. Technol. 2005, 28 (15), 2361¿2382. https://doi.org/10.1080/10826070500187558
dc.relationD¿Antonio, S.; Guannan, L.; Macherone, A. Quantitation of Phytocannabinoid Oils Using the Agilent Infinity II 1260 Prime/InfinityLab LC/MSD IQ LC/MS System. Agil. Technol. Inc 2020, Application note 5994-1706
dc.relationStorm, C.; Zumwalt, M.; Macherone, A. Dedicated Cannabinoid Potency Testing in Cannabis or Hemp Products Using the Agilent 1220 Infinity II LC System. Agil. Technol. Inc 2020, Application note 5991-9285
dc.relationWhiteley, B.; Long, W. Separation of 16 Cannabinoids Using the Agilent 1260 Infinity II LC System. Agil. Technol. Inc 2022, Application note 5994-5519
dc.relationVaclavik, L.; Benes, F.; Fenclova, M.; Hricko, J.; Krmela, A.; Svobodova, V.; Hajslova, J.; Mastovska, K. Quantitation of Cannabinoids in Cannabis Dried Plant Materials, Concentrates, and Oils Using Liquid Chromatography¿Diode Array Detection Technique with Optional Mass Spectrometric Detection: Single-Laboratory Validation Study, First Action 2018.11. J. AOAC Int. 2019, 102 (6), 1822¿1833. https://doi.org/10.5740/jaoacint.18-0426
dc.relationSong, L.; Carlson, S.; Valenzuela, G.; Chao, M.; Pathipaka, S. B. Development of a Validated Method for Rapid Quantification of up to Sixteen Cannabinoids Using Ultra-High-Performance Liquid Chromatography Diode-Array Detector with Optional Electrospray Ionization Time-of-Flight Mass Spectrometry Detection. J. Chromatogr. A 2022, 1670, 462953. https://doi.org/10.1016/j.chroma.2022.462953
dc.relationMandrioli, M.; Tura, M.; Scotti, S.; Gallina Toschi, T. Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis Sativa L. Molecules 2019, 24 (11), 2113. https://doi.org/10.3390/molecules24112113
dc.relationBlebea, N. M.; Rambu, D.; Costache, T.; Negre¿, S. Very Fast RP¿UHPLC¿PDA Method for Identification and Quantification of the Cannabinoids from Hemp Oil. Appl. Sci. 2021, 11 (20), 9414. https://doi.org/10.3390/app11209414
dc.relationBurnier, C.; Esseiva, P.; Roussel, C. Quantification of THC in Cannabis Plants by Fast-HPLC-DAD: A Promising Method for Routine Analyses. Talanta 2019, 192, 135¿141. https://doi.org/10.1016/j.talanta.2018.09.012
dc.relationBüttenbender, S.; Carlos, G.; Steppe, M.; Ortiz, R. S.; Limberger, R. P.; Mendez, A. S. L. Fast and Reliable Profiling of Cannabinoids in Seized Samples Using the Method of HPLC¿DAD Followed by Chemometrics. Forensic Toxicol. 2022, 40 (2), 407¿413. https://doi.org/10.1007/s11419-022-00625-x
dc.relationGiese, M. W.; Lewis, M. A.; Giese, L.; Smith, K. M. Method for the Analysis of Cannabinoids and Terpenes in Cannabis. J. AOAC Int. 2015, 98 (6), 1503¿1522. https://doi.org/10.5740/jaoacint.15-116
dc.relationAlmeida, A. M.; Castel-Branco, M. M.; Falcão, A. C. Linear Regression for Calibration Lines Revisited: Weighting Schemes for Bioanalytical Methods. J. Chromatogr. B 2002, 774 (2), 215¿222. https://doi.org/10.1016/S1570-0232(02)00244-1
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleValidación de métodos para el análisis de cannabinoides por HPLC-DAD y terpenoides por HS-GC-MS en inflorescencias de Cannabis sativa cultivada en Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución