dc.contributor | Álvarez Solano, Óscar Alberto | |
dc.contributor | Gómez Ramírez, Jorge Mario | |
dc.contributor | Pradilla Raguá, Diego Camilo | |
dc.contributor | Gómez Castro, Javier David | |
dc.contributor | Grupo de Diseño de Productos y Procesos | |
dc.creator | Calvo Silva, Fernando Javier | |
dc.date.accessioned | 2023-07-26T16:04:17Z | |
dc.date.accessioned | 2023-09-07T01:22:26Z | |
dc.date.available | 2023-07-26T16:04:17Z | |
dc.date.available | 2023-09-07T01:22:26Z | |
dc.date.created | 2023-07-26T16:04:17Z | |
dc.date.issued | 2023-06-09 | |
dc.identifier | http://hdl.handle.net/1992/68773 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728312 | |
dc.description.abstract | This study presents a multiscale approach for the production of cosmetic emulsions to evaluate the influence of the emulsification process on the macroscopic and microscopic properties of the product. This study evaluates the effects of the impeller's pumping capacity and tip velocity on the rheological and textural properties of the cosmetic emulsions at the macroscopic scale as well as the effect of these parameters on the average drop size and the drop size distribution at the microscopic scale. This study also considers the influence of the pumping capacity and tip velocity on the physical stability of cosmetic emulsions. Two dispersed phase concentrations were used in this study (i.e., 30 % and 80 % w/w) to evaluate the effect of the product formulation on the performance of the O/W cosmetic emulsions. The results showed that the impeller pumping capacity and the tip velocity are key parameters to control the energy demand and drop formation during the emulsification process (mean drop size and drop size distribution). These parameters also govern the microscopic structure of the emulsions, which has a strong influence on the macroscopic performance of the product. Thus, the tip velocity and pumping capacity are proposed as appropriate scale-up factors for the emulsification process. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Química y de Alimentos | |
dc.relation | https://doi.org/10.1016/j.cherd.2022.08.011 | |
dc.relation | Alvarez, O.A., Choplin, L., Sadtler, V., Marchal, P., Steíbeí, M.J., Mougel, J., Baravian, C., 2010. Influence of semibatch emulsification process conditions on the physical characteristics of highly concentrated water-in-oil emulsions. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie9020073 | |
dc.relation | Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., Hey Coradin, J., 2011. Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE J. 57, 160-177. https://doi.org/10.1002/aic.12242 | |
dc.relation | Bernardo, F.P., 2016. Integrated Process and Product Design Optimization, BS:CCE. Elsevier. https://doi.org/10.1016/B978-0-444-63683-6.00012-5 | |
dc.relation | Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022. Trends and perspectives on emulsified product design. Curr. Opin. Chem. Eng. 35, 100745. https://doi.org/https://doi.org/10.1016/j.coche.2021.100745 | |
dc.relation | Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020. Integrated design of emulsified cosmetic products: A review. Chem. Eng. Res. Des. 161, 279-303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014 | |
dc.relation | Canselier, J.P., Delmas, H., Wilhelm, A.M., Abismaïl, B., 2002. Ultrasound Emulsification-An Overview. J. Dispers. Sci. Technol. 23, 333-349. https://doi.org/10.1080/01932690208984209 | |
dc.relation | Capdevila, M., Maestro, A., Porras, M., Gutiérrez, J.M., 2010. Preparation of Span 80/oil/water highly concentrated emulsions: Influence of composition and formation variables and scale-up. J. Colloid Interface Sci. 345, 27-33. https://doi.org/https://doi.org/10.1016/j.jcis.2010.01.045 | |
dc.relation | Costa, R., Moggridge, G.D., Saraiva, P.M., 2006. Chemical product engineering: An emerging paradigm within chemical engineering. AIChE J. 52, 1976-1986. https://doi.org/10.1002/aic.10880 | |
dc.relation | Cussler, E.L., Moggridge, G.D., 2011. Chemical product design. Cambridge University Press. | |
dc.relation | Derkach, S.R., 2009. Rheology of emulsions. Adv. Colloid Interface Sci. https://doi.org/10.1016/j.cis.2009.07.001 | |
dc.relation | Estanqueiro, M., Amaral, M.H., Sousa Lobo, J.M., 2016. Comparison between sensory and instrumental characterization of topical formulations: impact of thickening agents. Int. J. Cosmet. Sci. 38. https://doi.org/10.1111/ics.12302 | |
dc.relation | Foucault, S., Ascanio, G., Tanguy, P.A., 2005. Power Characteristics in Coaxial Mixing: Newtonian and Non-Newtonian Fluids. Ind. Eng. Chem. Res. 44, 5036-5043. https://doi.org/10.1021/ie049654x | |
dc.relation | Foudazi, R., Qavi, S., Masalova, I., Malkin, A.Y., 2015. Physical chemistry of highly concentrated emulsions. Adv. Colloid Interface Sci. 220, 78-91. https://doi.org/https://doi.org/10.1016/j.cis.2015.03.002 | |
dc.relation | Gilbert, L., Picard, C., Savary, G., Grisel, M., 2013a. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surfaces A Physicochem. Eng. Asp. 421, 150-163. https://doi.org/10.1016/j.colsurfa.2013.01.003 | |
dc.relation | Gilbert, L., Savary, G., Grisel, M., Picard, C., 2013b. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemom. Intell. Lab. Syst. 124, 21-31. https://doi.org/https://doi.org/10.1016/j.chemolab.2013.03.002 | |
dc.relation | Gómez, I., Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2022. A multiscale approach for the integrated design of emulsified cosmetic products. Chem. Eng. Sci. 251, 117493. https://doi.org/https://doi.org/10.1016/j.ces.2022.117493 | |
dc.relation | Hemrajani, R.R., Tatterson, G.B., 2003. Mechanically Stirred Vessels. Handb. Ind. Mix., Wiley Online Books. https://doi.org/https://doi.org/10.1002/0471451452.ch6 | |
dc.relation | Krstonosic, V., Dokic, L., Nikolic, I., Milanovic, M., 2015. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll. 45, 9-17. https://doi.org/https://doi.org/10.1016/j.foodhyd.2014.10.024 | |
dc.relation | Mason, T.G., Lacasse, M.-D., Grest, G.S., Levine, D., Bibette, J., Weitz, D.A., 1997. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys. Rev. E 56, 3150-3166. https://doi.org/10.1103/PhysRevE.56.3150 | |
dc.relation | Mattei, M., Kontogeorgis, G.M., Gani, R., 2014. A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilib. 362, 288-299. https://doi.org/10.1016/j.fluid.2013.10.030 | |
dc.relation | McMullen, R.L., Gorcea, M., Chen, S., 2016. Emulsions and their Characterization by Texture Profile Analysis, in: Handbook of Formulating Dermal Applications. John Wiley & Sons, Ltd, pp. 129-153. https://doi.org/https://doi.org/10.1002/9781119364221.ch6 | |
dc.relation | Pacek, A.W., Man, C.C., Nienow, A.W., 1998. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem. Eng. Sci. 53, 2005-2011. | |
dc.relation | Peng, K., Wang, X., Lu, L., Liu, J., Guan, X., Huang, X., 2016. Insights into the Evolution of an Emulsion with Demulsifying Bacteria Based on Turbiscan. Ind. Eng. Chem. Res. 55, 7021-7029. https://doi.org/10.1021/acs.iecr.6b01347 | |
dc.relation | Pradilla, D., Vargas, W., Alvarez, O., 2015. The application of a multi-scale approach to the manufacture of concentrated and highly concentrated emulsions. Chem. Eng. Res. Des. 95, 162-172. https://doi.org/10.1016/j.cherd.2014.10.016 | |
dc.relation | Ramsay, J., Simmons, M.J.H., Ingram, A., Stitt, E.H., 2016. Mixing of Newtonian and viscoelastic fluids using "butterfly" impellers. Chem. Eng. Sci. 139, 125-141. https://doi.org/https://doi.org/10.1016/j.ces.2015.09.026 | |
dc.relation | Ricardez-Sandoval, L.A., 2011. Current challenges in the design and control of multiscale systems. Can. J. Chem. Eng. 89, 1324-1341. https://doi.org/10.1002/cjce.20607 | |
dc.relation | Vianna-Filho, R.P., Petkowicz, C.L.O., Silveira, J.L.M., 2013. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr. Polym. 93, 266-272. https://doi.org/10.1016/j.carbpol.2012.05.014 | |
dc.relation | Wang, P., Reviol, T., Ren, H., Böhle, M., 2019. Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel. Chem. Eng. Res. Des. 147, 259-277. https://doi.org/https://doi.org/10.1016/j.cherd.2019.05.001 | |
dc.relation | Wibowo, C., Ng, K.M., 2001. Product-oriented process synthesis and development: Creams and pastes. AIChE J. 47, 2746-2767. https://doi.org/10.1002/aic.690471214 | |
dc.relation | Xu, B., Kang, W., Wang, X., Meng, L., 2013. Influence of Water Content and Temperature on Stability of W/O Crude Oil Emulsion. Pet. Sci. Technol. 31, 1099-1108. https://doi.org/10.1080/10916466.2010.551812 | |
dc.relation | Zeng, L., Zhang, Y., Bukirwa, C., Li, W., Yang, Y., 2015. Study of mean diameter and drop size distribution of emulsion drops in a modified rotating disc contactor for an emulsion liquid membrane system. RSC Adv. 5, 89959-89970. https://doi.org/10.1039/C5RA16267J | |
dc.relation | Zhu, Y., Gao, H., Liu, W., Zou, L., McClements, D.J., 2020. A review of the rheological properties of dilute and concentrated food emulsions. J. Texture Stud. 51, 45-55. https://doi.org/https://doi.org/10.1111/jtxs.12444 | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Effect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: a multiscale approach | |
dc.type | Trabajo de grado - Maestría | |