dc.contributorÁlvarez Solano, Óscar Alberto
dc.contributorGómez Ramírez, Jorge Mario
dc.contributorPradilla Raguá, Diego Camilo
dc.contributorGómez Castro, Javier David
dc.contributorGrupo de Diseño de Productos y Procesos
dc.creatorCalvo Silva, Fernando Javier
dc.date.accessioned2023-07-26T16:04:17Z
dc.date.accessioned2023-09-07T01:22:26Z
dc.date.available2023-07-26T16:04:17Z
dc.date.available2023-09-07T01:22:26Z
dc.date.created2023-07-26T16:04:17Z
dc.date.issued2023-06-09
dc.identifierhttp://hdl.handle.net/1992/68773
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728312
dc.description.abstractThis study presents a multiscale approach for the production of cosmetic emulsions to evaluate the influence of the emulsification process on the macroscopic and microscopic properties of the product. This study evaluates the effects of the impeller's pumping capacity and tip velocity on the rheological and textural properties of the cosmetic emulsions at the macroscopic scale as well as the effect of these parameters on the average drop size and the drop size distribution at the microscopic scale. This study also considers the influence of the pumping capacity and tip velocity on the physical stability of cosmetic emulsions. Two dispersed phase concentrations were used in this study (i.e., 30 % and 80 % w/w) to evaluate the effect of the product formulation on the performance of the O/W cosmetic emulsions. The results showed that the impeller pumping capacity and the tip velocity are key parameters to control the energy demand and drop formation during the emulsification process (mean drop size and drop size distribution). These parameters also govern the microscopic structure of the emulsions, which has a strong influence on the macroscopic performance of the product. Thus, the tip velocity and pumping capacity are proposed as appropriate scale-up factors for the emulsification process.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationhttps://doi.org/10.1016/j.cherd.2022.08.011
dc.relationAlvarez, O.A., Choplin, L., Sadtler, V., Marchal, P., Steíbeí, M.J., Mougel, J., Baravian, C., 2010. Influence of semibatch emulsification process conditions on the physical characteristics of highly concentrated water-in-oil emulsions. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie9020073
dc.relationBagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., Hey Coradin, J., 2011. Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE J. 57, 160-177. https://doi.org/10.1002/aic.12242
dc.relationBernardo, F.P., 2016. Integrated Process and Product Design Optimization, BS:CCE. Elsevier. https://doi.org/10.1016/B978-0-444-63683-6.00012-5
dc.relationCalvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022. Trends and perspectives on emulsified product design. Curr. Opin. Chem. Eng. 35, 100745. https://doi.org/https://doi.org/10.1016/j.coche.2021.100745
dc.relationCalvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020. Integrated design of emulsified cosmetic products: A review. Chem. Eng. Res. Des. 161, 279-303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014
dc.relationCanselier, J.P., Delmas, H., Wilhelm, A.M., Abismaïl, B., 2002. Ultrasound Emulsification-An Overview. J. Dispers. Sci. Technol. 23, 333-349. https://doi.org/10.1080/01932690208984209
dc.relationCapdevila, M., Maestro, A., Porras, M., Gutiérrez, J.M., 2010. Preparation of Span 80/oil/water highly concentrated emulsions: Influence of composition and formation variables and scale-up. J. Colloid Interface Sci. 345, 27-33. https://doi.org/https://doi.org/10.1016/j.jcis.2010.01.045
dc.relationCosta, R., Moggridge, G.D., Saraiva, P.M., 2006. Chemical product engineering: An emerging paradigm within chemical engineering. AIChE J. 52, 1976-1986. https://doi.org/10.1002/aic.10880
dc.relationCussler, E.L., Moggridge, G.D., 2011. Chemical product design. Cambridge University Press.
dc.relationDerkach, S.R., 2009. Rheology of emulsions. Adv. Colloid Interface Sci. https://doi.org/10.1016/j.cis.2009.07.001
dc.relationEstanqueiro, M., Amaral, M.H., Sousa Lobo, J.M., 2016. Comparison between sensory and instrumental characterization of topical formulations: impact of thickening agents. Int. J. Cosmet. Sci. 38. https://doi.org/10.1111/ics.12302
dc.relationFoucault, S., Ascanio, G., Tanguy, P.A., 2005. Power Characteristics in Coaxial Mixing: Newtonian and Non-Newtonian Fluids. Ind. Eng. Chem. Res. 44, 5036-5043. https://doi.org/10.1021/ie049654x
dc.relationFoudazi, R., Qavi, S., Masalova, I., Malkin, A.Y., 2015. Physical chemistry of highly concentrated emulsions. Adv. Colloid Interface Sci. 220, 78-91. https://doi.org/https://doi.org/10.1016/j.cis.2015.03.002
dc.relationGilbert, L., Picard, C., Savary, G., Grisel, M., 2013a. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surfaces A Physicochem. Eng. Asp. 421, 150-163. https://doi.org/10.1016/j.colsurfa.2013.01.003
dc.relationGilbert, L., Savary, G., Grisel, M., Picard, C., 2013b. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemom. Intell. Lab. Syst. 124, 21-31. https://doi.org/https://doi.org/10.1016/j.chemolab.2013.03.002
dc.relationGómez, I., Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2022. A multiscale approach for the integrated design of emulsified cosmetic products. Chem. Eng. Sci. 251, 117493. https://doi.org/https://doi.org/10.1016/j.ces.2022.117493
dc.relationHemrajani, R.R., Tatterson, G.B., 2003. Mechanically Stirred Vessels. Handb. Ind. Mix., Wiley Online Books. https://doi.org/https://doi.org/10.1002/0471451452.ch6
dc.relationKrstonosic, V., Dokic, L., Nikolic, I., Milanovic, M., 2015. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll. 45, 9-17. https://doi.org/https://doi.org/10.1016/j.foodhyd.2014.10.024
dc.relationMason, T.G., Lacasse, M.-D., Grest, G.S., Levine, D., Bibette, J., Weitz, D.A., 1997. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys. Rev. E 56, 3150-3166. https://doi.org/10.1103/PhysRevE.56.3150
dc.relationMattei, M., Kontogeorgis, G.M., Gani, R., 2014. A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilib. 362, 288-299. https://doi.org/10.1016/j.fluid.2013.10.030
dc.relationMcMullen, R.L., Gorcea, M., Chen, S., 2016. Emulsions and their Characterization by Texture Profile Analysis, in: Handbook of Formulating Dermal Applications. John Wiley & Sons, Ltd, pp. 129-153. https://doi.org/https://doi.org/10.1002/9781119364221.ch6
dc.relationPacek, A.W., Man, C.C., Nienow, A.W., 1998. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem. Eng. Sci. 53, 2005-2011.
dc.relationPeng, K., Wang, X., Lu, L., Liu, J., Guan, X., Huang, X., 2016. Insights into the Evolution of an Emulsion with Demulsifying Bacteria Based on Turbiscan. Ind. Eng. Chem. Res. 55, 7021-7029. https://doi.org/10.1021/acs.iecr.6b01347
dc.relationPradilla, D., Vargas, W., Alvarez, O., 2015. The application of a multi-scale approach to the manufacture of concentrated and highly concentrated emulsions. Chem. Eng. Res. Des. 95, 162-172. https://doi.org/10.1016/j.cherd.2014.10.016
dc.relationRamsay, J., Simmons, M.J.H., Ingram, A., Stitt, E.H., 2016. Mixing of Newtonian and viscoelastic fluids using "butterfly" impellers. Chem. Eng. Sci. 139, 125-141. https://doi.org/https://doi.org/10.1016/j.ces.2015.09.026
dc.relationRicardez-Sandoval, L.A., 2011. Current challenges in the design and control of multiscale systems. Can. J. Chem. Eng. 89, 1324-1341. https://doi.org/10.1002/cjce.20607
dc.relationVianna-Filho, R.P., Petkowicz, C.L.O., Silveira, J.L.M., 2013. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr. Polym. 93, 266-272. https://doi.org/10.1016/j.carbpol.2012.05.014
dc.relationWang, P., Reviol, T., Ren, H., Böhle, M., 2019. Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel. Chem. Eng. Res. Des. 147, 259-277. https://doi.org/https://doi.org/10.1016/j.cherd.2019.05.001
dc.relationWibowo, C., Ng, K.M., 2001. Product-oriented process synthesis and development: Creams and pastes. AIChE J. 47, 2746-2767. https://doi.org/10.1002/aic.690471214
dc.relationXu, B., Kang, W., Wang, X., Meng, L., 2013. Influence of Water Content and Temperature on Stability of W/O Crude Oil Emulsion. Pet. Sci. Technol. 31, 1099-1108. https://doi.org/10.1080/10916466.2010.551812
dc.relationZeng, L., Zhang, Y., Bukirwa, C., Li, W., Yang, Y., 2015. Study of mean diameter and drop size distribution of emulsion drops in a modified rotating disc contactor for an emulsion liquid membrane system. RSC Adv. 5, 89959-89970. https://doi.org/10.1039/C5RA16267J
dc.relationZhu, Y., Gao, H., Liu, W., Zou, L., McClements, D.J., 2020. A review of the rheological properties of dilute and concentrated food emulsions. J. Texture Stud. 51, 45-55. https://doi.org/https://doi.org/10.1111/jtxs.12444
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEffect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: a multiscale approach
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución