dc.contributorBressler, Paul
dc.contributorPlavnik, Julia
dc.contributorGalindo Martínez, César Neyit
dc.creatorRuiz Pineda, Felipe Fernando
dc.date.accessioned2023-07-13T13:18:46Z
dc.date.accessioned2023-09-07T01:19:56Z
dc.date.available2023-07-13T13:18:46Z
dc.date.available2023-09-07T01:19:56Z
dc.date.created2023-07-13T13:18:46Z
dc.date.issued2022-12-06
dc.identifierhttp://hdl.handle.net/1992/68389
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728274
dc.description.abstractThe main topic of this work is the Turaev-Viro construction of a 3-dimensopnal topological quantum field theory (TQFT). We begin by giving a description of spherical fusion categories an it's associated graphical calculus. Then, with a given spherical fusion category, we construct the Turaev-Viro TQFT on triangulated manifolds by labeling the triangulation and using the graphical calculus to assign either a morphism vector space or a given morphism in said space. Lastly, we construct two classes of examples of spherical fusion categories which appear from finite depth subfactors and planar algebras.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Matemáticas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Matemáticas
dc.relation[1] M. F. Atiyah, Topological quantum field theory, Publications Mathématiques de l'IHÉS, vol. 68, pp. 175-186, 1988.
dc.relation[2] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology, vol. 31, no. 4, pp. 865-902, 1992.
dc.relation[3] A. Ocneanu, Operator algebras, 3-manifolds and quantum field theory, OHP sheets for the Istanbul talk, 1991.
dc.relation[4] J. Barrett and B. Westbury, Invariants of piecewise-linear 3-manifolds, Transactions of the American Mathematical Society, vol. 348, no. 10, pp. 3997-4022, 1996.
dc.relation[5] A. Kirillov Jr and B. Balsam, Turaev-viro invariants as an extended tqft, arXiv preprint arXiv:1004.1533, 2010.
dc.relation[6] S. Mac Lane, Categories for the working mathematician. Springer Science & Business Me- dia, 2013, vol. 5.
dc.relation[7] V. Turaev, A. Virelizier, et al., Monoidal categories and topological field theory. Springer, 2017, vol. 322.
dc.relation[8] J. W. Barrett and B. W. Westbury, Spherical categories, Advances in Mathematics, vol. 143, no. 2, pp. 357-375, 1999.
dc.relation[9] A. Joyal and R. Street, The geometry of tensor calculus, i, Advances in mathematics, vol. 88, no. 1, pp. 55-112, 1991.
dc.relation[10] P. Selinger, A survey of graphical languages for monoidal categories, in New structures for physics, Springer, 2010, pp. 289-355.
dc.relation[11] L. Abrams, Two-dimensional topological quantum field theories and frobenius algebras, Journal of Knot theory and its ramifications, vol. 5, no. 05, pp. 569-587, 1996.
dc.relation[13] U. von Pachner, Konstruktionsmethoden und das kombinatorische homöomorphieproblem für triangulationen kompakter semilinearer mannigfaltigkeiten, in Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Springer, vol. 57, 1987, pp. 69-86.
dc.relation[14] F. J. Murray and J. v. Neumann, On rings of operators, Annals of Mathematics, pp. 116-229, 1936.
dc.relation[15] B. Blackadar, Operator algebras: theory of C*-algebras and von Neumann algebras. Springer Science & Business Media, 2006, vol. 122.
dc.relation[16] M. Takesaki et al., Theory of operator algebras II. Springer, 2003, vol. 125.
dc.relation[17] F. J. Murray and J. v. Neumann, On rings of operators, Annals of Mathematics, vol. 37, no. 1, pp. 116-229, 1936.
dc.relation[18] V. Jones, Index for subfactors, 1983.
dc.relation[19] D. Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a sub- factor, The Fields Institute for Research in Mathematical Sciences Communications Series, vol. 13, pp. 13-63, 1997.
dc.relation[20] A. Connes, J. Cuntz, M. A. Rieffel, and G. Yu, Noncommutative geometry, Oberwolfach Reports, vol. 10, no. 3, pp. 2553-2629, 2014.
dc.relation[21] D. E. Evans, Y. Kawahigashi, et al., Quantum symmetries on operator algebras. Clarendon Press Oxford, 1998, vol. 147.
dc.relation[22] D. Penneys, A planar calculus for infinite index subfactors, Communications in Mathemat- ical Physics, vol. 319, no. 3, pp. 595-648, 2013.
dc.relation[23] V. Jones, S. Morrison, and N. Snyder, The classification of subfactors of index at most 5, Bulletin of the American Mathematical Society, vol. 51, no. 2, pp. 277-327, 2014.
dc.relation[24] V. F. Jones, Planar algebras, i, arXiv preprint math/9909027, 1999.
dc.relation[25] A. Henriques and D. Penneys, Representations of fusion categories and their commutants, arXiv preprint arXiv:2004.08271, 2020.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleTopological Quantum Field Theories from Spherical Fusion Categories
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución