dc.contributor | Bressler, Paul | |
dc.contributor | Plavnik, Julia | |
dc.contributor | Galindo Martínez, César Neyit | |
dc.creator | Ruiz Pineda, Felipe Fernando | |
dc.date.accessioned | 2023-07-13T13:18:46Z | |
dc.date.accessioned | 2023-09-07T01:19:56Z | |
dc.date.available | 2023-07-13T13:18:46Z | |
dc.date.available | 2023-09-07T01:19:56Z | |
dc.date.created | 2023-07-13T13:18:46Z | |
dc.date.issued | 2022-12-06 | |
dc.identifier | http://hdl.handle.net/1992/68389 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728274 | |
dc.description.abstract | The main topic of this work is the Turaev-Viro construction of a 3-dimensopnal topological quantum field theory (TQFT). We begin by giving a description of spherical fusion categories an it's associated graphical calculus. Then, with a given spherical fusion category, we construct the Turaev-Viro TQFT on triangulated manifolds by labeling the triangulation and using the graphical calculus to assign either a morphism vector space or a given morphism in said space. Lastly, we construct two classes of examples of spherical fusion categories which appear from finite depth subfactors and planar algebras. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Matemáticas | |
dc.relation | [1] M. F. Atiyah, Topological quantum field theory, Publications Mathématiques de l'IHÉS,
vol. 68, pp. 175-186, 1988. | |
dc.relation | [2] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols,
Topology, vol. 31, no. 4, pp. 865-902, 1992. | |
dc.relation | [3] A. Ocneanu, Operator algebras, 3-manifolds and quantum field theory, OHP sheets for the
Istanbul talk, 1991. | |
dc.relation | [4] J. Barrett and B. Westbury, Invariants of piecewise-linear 3-manifolds, Transactions of the
American Mathematical Society, vol. 348, no. 10, pp. 3997-4022, 1996. | |
dc.relation | [5] A. Kirillov Jr and B. Balsam, Turaev-viro invariants as an extended tqft, arXiv preprint
arXiv:1004.1533, 2010. | |
dc.relation | [6] S. Mac Lane, Categories for the working mathematician. Springer Science & Business Me-
dia, 2013, vol. 5. | |
dc.relation | [7] V. Turaev, A. Virelizier, et al., Monoidal categories and topological field theory. Springer,
2017, vol. 322. | |
dc.relation | [8] J. W. Barrett and B. W. Westbury, Spherical categories, Advances in Mathematics, vol. 143,
no. 2, pp. 357-375, 1999. | |
dc.relation | [9] A. Joyal and R. Street, The geometry of tensor calculus, i, Advances in mathematics,
vol. 88, no. 1, pp. 55-112, 1991. | |
dc.relation | [10] P. Selinger, A survey of graphical languages for monoidal categories, in New structures
for physics, Springer, 2010, pp. 289-355. | |
dc.relation | [11] L. Abrams, Two-dimensional topological quantum field theories and frobenius algebras, Journal of Knot theory and its ramifications, vol. 5, no. 05, pp. 569-587, 1996. | |
dc.relation | [13] U. von Pachner, Konstruktionsmethoden und das kombinatorische homöomorphieproblem
für triangulationen kompakter semilinearer mannigfaltigkeiten, in Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, Springer, vol. 57, 1987, pp. 69-86. | |
dc.relation | [14] F. J. Murray and J. v. Neumann, On rings of operators, Annals of Mathematics, pp. 116-229, 1936. | |
dc.relation | [15] B. Blackadar, Operator algebras: theory of C*-algebras and von Neumann algebras. Springer
Science & Business Media, 2006, vol. 122. | |
dc.relation | [16] M. Takesaki et al., Theory of operator algebras II. Springer, 2003, vol. 125. | |
dc.relation | [17] F. J. Murray and J. v. Neumann, On rings of operators, Annals of Mathematics, vol. 37,
no. 1, pp. 116-229, 1936. | |
dc.relation | [18] V. Jones, Index for subfactors, 1983. | |
dc.relation | [19] D. Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a sub-
factor, The Fields Institute for Research in Mathematical Sciences Communications Series,
vol. 13, pp. 13-63, 1997. | |
dc.relation | [20] A. Connes, J. Cuntz, M. A. Rieffel, and G. Yu, Noncommutative geometry, Oberwolfach
Reports, vol. 10, no. 3, pp. 2553-2629, 2014. | |
dc.relation | [21] D. E. Evans, Y. Kawahigashi, et al., Quantum symmetries on operator algebras. Clarendon
Press Oxford, 1998, vol. 147. | |
dc.relation | [22] D. Penneys, A planar calculus for infinite index subfactors, Communications in Mathemat-
ical Physics, vol. 319, no. 3, pp. 595-648, 2013. | |
dc.relation | [23] V. Jones, S. Morrison, and N. Snyder, The classification of subfactors of index at most 5,
Bulletin of the American Mathematical Society, vol. 51, no. 2, pp. 277-327, 2014. | |
dc.relation | [24] V. F. Jones, Planar algebras, i, arXiv preprint math/9909027, 1999. | |
dc.relation | [25] A. Henriques and D. Penneys, Representations of fusion categories and their commutants,
arXiv preprint arXiv:2004.08271, 2020. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Topological Quantum Field Theories from Spherical Fusion Categories | |
dc.type | Trabajo de grado - Maestría | |