dc.contributor | Bressan, Michael | |
dc.contributor | Giraldo Trujillo, Luis Felipe | |
dc.contributor | González Mancera, Andrés Leonardo | |
dc.contributor | López Jiménez, Jorge Alfredo | |
dc.creator | Robinson Luque, Christian Edward | |
dc.date.accessioned | 2023-08-11T15:15:05Z | |
dc.date.accessioned | 2023-09-07T01:19:11Z | |
dc.date.available | 2023-08-11T15:15:05Z | |
dc.date.available | 2023-09-07T01:19:11Z | |
dc.date.created | 2023-08-11T15:15:05Z | |
dc.date.issued | 2023-06-30 | |
dc.identifier | http://hdl.handle.net/1992/69649 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728262 | |
dc.description.abstract | This study details the development and deployment of
a real-time anomaly classification system on edge AI devices for
solar systems. We used a neural network model, fine-tuned using
the keras-tuner library, resulting in an average accuracy of 97.95%.
Our optimal model demonstrated a robust performance with an
accuracy of 97.84% and a small size (31.531 kB). We applied quantization as a model reduction technique, substantially decreasing
the model size to 7.455 kB while maintaining similar accuracy. The
reduced model was successfully implemented on various edge AI
platforms, with STM32F767 Nucleo-144 proving to be the most cost-effective and energy-efficient. The study suggests further research
on different solar systems and a comprehensive cost-effectiveness
analysis for large-scale deployment. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Eléctrica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.relation | Collin Barker, Sam Cipkar, Tyler Lavigne, Cameron Watson, and Maher
Azzouz. Real-Time Nuisance Fault Detection in Photovoltaic Generation
Systems Using a Fine Tree Classifier. Sustainability, 13(4):2235,
January 2021. Number: 4 Publisher: Multidisciplinary Digital Publishing
Institute. | |
dc.relation | Massimiliano De Benedetti, Fabio Leonardi, Fabrizio Messina, Corrado
Santoro, and Athanasios Vasilakos. Anomaly detection and predictive
maintenance for photovoltaic systems. Neurocomputing, 310:59-68,
October 2018. | |
dc.relation | Joshuva Arockia Dhanraj, Ali Mostafaeipour, Karthikeyan Velmurugan,
Kuaanan Techato, Prem Kumar Chaurasiya, Jenoris Muthiya Solomon,
Anitha Gopalan, and Khamphe Phoungthong. An Effective Evaluation
on Fault Detection in Solar Panels. Energies, 14(22):7770, January 2021.
Number: 22 Publisher: Multidisciplinary Digital Publishing Institute. | |
dc.relation | Digikey. NUCLEO-F767ZI STMicroelectronics | Development Boards,
Kits, Programmers | DigiKey. | |
dc.relation | Digikey. NVIDIA JETSON ORIN NANO DEV KIT | |
dc.relation | Digikey. STM32H745I-DISCO. | |
dc.relation | Google. Dev Board. | |
dc.relation | Mojgan Hojabri, Samuel Kellerhals, Govinda Upadhyay, and Benjamin
Bowler. IoT-Based PV Array Fault Detection and Classification Using
Embedded Supervised Learning Methods. Energies, 15(6):2097, Jan uary 2022. Number: 6 Publisher: Multidisciplinary Digital Publishing
Institute. | |
dc.relation | IRENA. World Energy Transitions Outlook 2022: 1.5°C Pathway.
Technical report, 2022. | |
dc.relation | IRENA. World Energy Transitions Outlook 2023: 1.5°C Pathway;
Preview. Technical report, 2023. | |
dc.relation | Varaha Satra Bharath Kurukuru, Ahteshamul Haque, Mohammed Ali
Khan, Subham Sahoo, Azra Malik, and Frede Blaabjerg. A Review
on Artificial Intelligence Applications for Grid-Connected Solar Pho tovoltaic Systems. Energies, 14(15):4690, January 2021. Number: 15
Publisher: Multidisciplinary Digital Publishing Institute. | |
dc.relation | F. Mallor, Teresa Leon, Liesje De Boeck, Stefan Gulck, Michel Meulders, and Bart Meerssche. A method for detecting malfunctions in PV
solar panels based on electricity production monitoring. Solar Energy,
153:51-63, September 2017. | |
dc.relation | André Eugênio Lazzaretti, Clayton Hilgemberg da Costa,
Marcelo Paludetto Rodrigues, Guilherme Dan Yamada, Gilberto
Lexinoski, Guilherme Luiz Moritz, Elder Oroski, Rafael Eleodoro de
Goes, Robson Ribeiro Linhares, Paulo Cézar Stadzisz, Júlio Shigeaki
Omori, and Rodrigo Braun dos Santos. A Monitoring System for Online
Fault Detection and Classification in Photovoltaic Plants. Sensors,
20(17):4688, January 2020. Number: 17 Publisher: Multidisciplinary
Digital Publishing Institute. | |
dc.relation | Adel Mellit. An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks. Engineering Applications of Artificial Intelligence, 116:105459, November 2022. | |
dc.relation | Adel Mellit, Omar Herrak, Catalina Rus Casas, and Alessandro Massi Pavan. A Machine Learning and
Internet of Things-Based Online Fault Diagnosis Method for Photovoltaic Arrays. Sustainability,
13(23):13203, January 2021. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute. | |
dc.relation | Sampurna Lakshmi P, Sivagamasundari S, and Manjula Sri Rayudu. IoT based solar panel fault and maintenance detection using decision tree with light gradient boosting. Measurement: Sensors, 27:100726, June 2023. | |
dc.relation | Ali Reza Sajun, Salsabeel Shapsough, Imran Zualkernan, and Rached Dhaouadi. Edge-based individualized anomaly detection in large-scale distributed solar farms. ICT Express, 8(2):174-178, June 2022. | |
dc.relation | Jiaqi Shi, Nian Liu, Yujing Huang, and Liya Ma. An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off. Applied Energy,
310:118456, March 2022. | |
dc.relation | H. Walker, Eric Lockhart, Jal Desai, Kristen Ardani, Geoff Klise, Olga Lavrova, Tom Tansy, Jessie Deot, Bob Fox, and Anil Pochiraju. Model of Operation-and-Maintenance Costs for Photovoltaic Systems. Technical Report NREL/TP-5C00-74840, 1659995, MainId:6662, June 2020. | |
dc.relation | Yingxin Xie, Xiangguang Chen, and Jun Zhao. Adaptive and Online Fault Detection Using RPCA Algorithm in Wireless Sensor Network Nodes. In 2012 Second International Conference on Intelligent System Design and Engineering Application, pages 1371-1374, January 2012. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Edge AI for real-time anomaly classification in solar photovoltaic systems | |
dc.type | Trabajo de grado - Maestría | |