dc.contributorBernal Giraldo, Adriana Jimena
dc.contributorZambrano Eder, María Mercedes
dc.contributorVillegas Torres, María Francisca
dc.contributorLaboratorio de Interacciones Moleculares de Microorganismos en Agricultura - LIMMA
dc.creatorHernández, Erick Geovanni
dc.date.accessioned2023-02-06T18:57:58Z
dc.date.accessioned2023-09-07T01:18:55Z
dc.date.available2023-02-06T18:57:58Z
dc.date.available2023-09-07T01:18:55Z
dc.date.created2023-02-06T18:57:58Z
dc.date.issued2023-02-05
dc.identifierhttp://hdl.handle.net/1992/64721
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728259
dc.description.abstractMediante el Sistema de secreción tipo VI (T6SS), las bacterias gramnegativas pueden translocar proteínas efectoras que juegan un papel importante en competencia bacteriana y virulencia hacia hospederos eucariotas. En este estudio, fue posible realizar el aislamiento e identificación taxonómica mediante secuenciación del gen 16S, de seis bacterias epífitas que habitan la filósfera de yuca (Manihot esculenta), una especie vegetal de importancia económica en Sur América y África. Ensayos de competencia bacteriana in vitro sugirieron que el T6SS de la bacteria fitopatógena Xanthomonas phaseoli pv. manihotis (Xpm) era requerido por contacto directo para ejercer competencia bacteriana hacia la bacteria epífita de yuca Rhodococcus sp. Mutantes para los genes VgrG, ClpV y Hcp del T6SS de Xpm fueron incapaces de inhibir el crecimiento de Rhodococcus sp. Sin embargo, no fue posible determinar con certeza que el T6SS de Xpm sea el responsable de la inhibición de Rhodococcus sp., debido a la falta de complementación observada de estos mutantes en Xpm. Finalmente, fue posible predecir a través de análisis bioinformáticos dos proteínas efectoras que serían hipotéticamente traslocadas por el T6SS de Xpm, y el papel que podrían cumplir en la competencia bacteriana. Los resultados obtenidos en este estudio ayudan a comprender de alguna manera, cómo el T6SS podría jugar un papel importante en competencia bacteriana posibilitando que Xpm gane ventaja de nicho al matar a otras bacterias, facilitando finalmente el establecimiento de la enfermedad tizón bacteriano de la yuca (CBB).
dc.description.abstractThrough the Type VI Secretion System (T6SS), Gram-negative bacteria can translocate effector proteins that play an important role in bacterial competition and virulence towards eukaryotic hosts. In this study, it was possible to perform the isolation and taxonomic identification through 16S gene sequencing of six epiphytic bacteria that inhabit the cassava (Manihot esculenta) phyllosphere, a plant species of economic importance in South America and Africa. In vitro bacterial competition assays suggested that T6SS from the phytopathogenic bacterium Xanthomonas phaseoli pv. manihotis (Xpm) was required by direct contact to exert bacterial competition towards the cassava epiphytic bacterium Rhodococcus sp. Mutants for the VgrG, ClpV and Hcp genes of the Xpm T6SS were unable to inhibit the growth of Rhodococcus sp. However, it was not possible to determine with certainty that the T6SS of Xpm is responsible for the inhibition of Rhodococcus sp., due to the observed lack of complementation of these mutants in Xpm. Finally, it was possible to predict through bioinformatic analysis two effector proteins that would be hypothetically translocated by the T6SS of Xpm, and the role that they could play in bacterial competition. The results obtained in this study help to understand in some way, how T6SS could play an important role in bacterial competition, enabling Xpm to gain a niche advantage by killing other bacteria, finally facilitating the establishment of cassava bacterial blight disease (CBB).
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAbendroth, U., Adlung, N., Otto, A., Grüneisen, B., Becher, D., & Bonas, U. (2017). Identification of new protein-coding genes with a potential role in the virulence of the plant pathogen Xanthomonas euvesicatoria. BMC Genomics, 18, 1-14. https://doi.org/10.1186/s12864-017-4041-7
dc.relationAhmad, S., Wang, B., Walker, M. D., Tran, H.-K. R., Stogios, P. J., Savchenko, A., Grant, R. A., McArthur, A. G., Laub, M. T., & Whitney, J. C. (2019). An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature: International Weekly Journal of Science, 575(7784), 674. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41586-019-1735-9
dc.relationAlmagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology: The Science and Business of Biotechnology, 37(4), 420. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41587-019-0036-z
dc.relationAltindis, E., Dong, T., Catalano, C. & Mekalanos, J. (2015). Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio 6, e00075-15
dc.relationAn, Y., Wang, J., Li, C., Leier, A., Marquez-Lago, T., Wilksch, J., Zhang, Y., Webb, G. I., Song, J., & Lithgow, T. (2018). Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. Briefings in Bioinformatics, 19(1), 148-161. https://doi.org/10.1093/bib/bbw100
dc.relationAshida, H., & Sasakawa, C. (2017). Bacterial E3 ligase effectors exploit host ubiquitin systems. Current opinion in microbiology, 35, 16-22.
dc.relationAubert, D. F., Xu, H., Yang, J., Shi, X., Gao, W., Li, L., Bisaro, F., Chen, S., Valvano, M. A., & Shao, F. (2016). A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host & Microbe, 19(5), 664-674. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2016.04.004
dc.relationBayer-Santos E, Lima LD, Ceseti LD. (2018). Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF o factor and cognate Ser/ Thr kinase. Environ Microbiol 20:1562-1575. https://doi. org/10.1111/1462-2920.14085
dc.relationBenz, J., Sendlmeier, C., Barends, T. R. M., & Meinhart, A. (2012). Structural Insights into the Effector - Immunity System Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE, 7(7), 1-10. https://doi.org/10.1371/journal.pone.0040453
dc.relationBock, D., Medeiros, J., Tsao, H., Penz, T., Weiss, G., Aistleitner, K., et al. (2017). In situ architecture, function, and evolution of a contractile injection system. Science 357, 713-717. doi: 10.1126/science.aan7904
dc.relationBondage, D. D., Lin, J. S., Ma, L. S., Kuo, C. H., & Lai, E. M. (2016). VgrG C-terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proceedings of the National Academy of Sciences of the United States of America, 113, E3931-E3940.
dc.relationBorgeaud, S., Metzger, L., Scrignari, T. and Blokesch, M. (2015). The Type VI Secretion System of Vibrio Cholerae Fosters Horizontal Gene Transfer. Science 347 (6217): 63-67. https://search-ebscohost-com.ezproxy.uniandes.edu.co:8443/login.aspx?direct=true&db=edsjsr&AN=edsjsr.24745669&lang=es&site=eds-live&scope=site.
dc.relationBoyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., and Attree, I. (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104. doi: 10.1186/1471-2164-10-104
dc.relationBröms, J. E., Meyer, L., Sun, K., Lavander, M., & Sjöstedt, A. (2012). Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS ONE, 7(11), 1-11. https://doi.org/10.1371/journal.pone.0050473
dc.relationBurnham, P. M., & Hendrixson, D. R. (2018). Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nature Reviews Microbiology, 16(9), 551. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41579-018-0037-9
dc.relationBusby, J. N., Panjikar, S., Landsberg, M. J., Hurst, M. R. H., & Lott, J. S. (2013). The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature, 501(7468), 547-550. https://doi.org/10.1038/nature12465
dc.relationBüttner Carina R., Wu Yingzhou, Maxwell Karen L., & Davidson Alan R. (2016). Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10174-10179.
dc.relationCeseti, L. M., de Santana, E. S., Ratagami, C. Y., Barreiros, Y., Lima, L. D. P., Dunger, G., Farah, C. S., & Alvarez-Martinez, C. E. (2019). The Xanthomonas citri pv. citri Type VI Secretion System is Induced During Epiphytic Colonization of Citrus. Current Microbiology, 76(10), 1105. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1007/s00284-019-01735-3
dc.relationChassaing, B., & Cascales, E. (2018). Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends in Microbiology, 26(4), 329-338. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.tim.2018.01.006
dc.relationChatzidaki-Livanis, M., Geva-Zatorsky, N., & Comstock, L. E. (2016). Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proceedings of the National Academy of Sciences, 113(13), 3627-3632.
dc.relationChen, H., Yang, D., Han, F., Tan, J., Zhang, L., Xiao, J., Zhang, Y., & Liu, Q. (2017). The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca2+-Dependent MAPK-Jnk Pathway. Cell Host & Microbe, 21(1), 47-58. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2016.12.004
dc.relationChoi, Yeounju, Kim, Namgyu, Mannaa, Mohamed, Kim, Hongsup, Jungwook Park, Hyejung Jung, Gil Han, Hyun-Hee Lee, & Young-Su Seo. (2020). Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice. The Plant Pathology Journal, 36(3), 289-296. https://doi.org/10.5423/PPJ.NT.02.2020.0026
dc.relationCianfanelli, F. R., Alcoforado Diniz, J., Guo, M., De Cesare, V., Trost, M., & Coulthurst, S. J. (2016). VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathogens, 12(6), 1-27. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1371/journal.ppat.1005735
dc.relationCosta, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews. Microbiology, 13(6), 343-359. https://doi.org/10.1038/nrmicro3456
dc.relationCoyne, M. J., Roelofs, K. G., & Comstock, L. E. (2016). Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics, 17, 1-21. https://doi.org/10.1186/s12864-016-2377-z
dc.relationCoulthurst, S. (2019). The type VI secretion system: A versatile bacterial weapon. Microbiology, 165(5), 503-515. https://doi.org/10.1099/mic.0.000789
dc.relationCrisan, C. V., Nichols, H. L., Wiesenfeld, S., Steinbach, G., Yunker, P. J., & Hammer, B. K. (2021). Glucose confers protection to Escherichia coli against contact killing by Vibrio cholerae. Scientific Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-81813-4
dc.relationDepuydt, S., Trenkamp, S., Fernie, A. R., Elftieh, S., Renou, J. P., Vuylsteke, M., ... & Vereecke, D. (2009). An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiology, 149(3), 1366-1386.
dc.relationDhandapani, P., Song, J., Novak, O., & Jameson, P. E. (2017). Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Annals of botany, 119(5), 841-852.
dc.relationDick, M., Sborgi, L., Rühl, S., Hiller, S. & Broz, P. (2016). ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications, 7(1), 1-13. https://doi.org/10.1038/ncomms11929
dc.relationDing, J., Wang, W., Feng, H., Zhang, Y. & Wang, D. C. (2012). Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J. Biol. Chem. 287, 26911-26920.
dc.relationDonato, S. L., Beck, C. M., Garza-Sánchez, F., Jensen, S. J., Ruhe, Z. C., Cunningham, D. A., ... & Hayes, C. S. (2020). The beta-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion. Proceedings of the National Academy of Sciences, 117(52), 33540-33548.
dc.relationDong, T. G., Ho, B. T., Yoder-Himes, D. R., and Mekalanos, J. J. (2013). Identification of T6SS dependent effector and immunity proteins by Tnseq in Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 110, 2623-2628. doi: 10.1073/pnas.1222783110
dc.relationDrevinek, P., & Mahenthiralingam, E. (2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clinical Microbiology and Infection, 16(7), 821-830. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1111/j.1469-0691.2010.03237.x
dc.relationDurán, D., Bernal, P., Vazquez-Arias, D., Blanco-Romero, E., Garrido-Sanz, D., Redondo-Nieto, M., ... & Martín, M. (2021). Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome. Scientific reports, 11(1), 1-13.
dc.relationDurand, E., Derrez, E., Audoly, G., Spinelli, S., Ortiz-Lombardia, M., Raoult, D., et al. (2012). Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J. Biol. Chem. 287, 38190-38199. doi: 10.1074/jbc.M112.390153
dc.relationDurand, E., Cambillau, C., Cascales, E., & Journet, L. (2014). VgrG, Tae, Tle, and beyond: The versatile arsenal of Type VI secretion effectors. Trends in Microbiology, 22(9), 498-507. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.tim.2014.06.004
dc.relationEichinger, V., Nussbaumer, T., Platzer, A., Jehl, M.-A., Rattei, T., & Arnold, R. (2016). EffectiveDB - Updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Research, 44(D1), D669-D674. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1093/nar/gkv1269
dc.relationFernández-Ruiz, I., Coutinho, F. & Rodriguez-Valera, F. (2018). Thousands of Novel Endolysins Discovered in Uncultured Phage Genomes. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01033
dc.relationFilloux, A. (2013). The rise of the Type VI secretion system. F1000prime Reports, 5, 52. https://doi.org/10.12703/P5-52
dc.relationForster, A., Planamente, S., Manoli, E., Lossi, N. S., Freemont, P. S., and Filloux, A. (2014). Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC and the accessory protein TagJ/HsiE1 distinguishes type VI secretion classes. J. Biol. Chem. 289, 33032-33043. doi: 10.1074/jbc.M114.600510
dc.relationFlaugnatti, N., Le, T. T. H., Canaan, S., Aschtgen, M. S., Nguyen, V. S., Blangy, S., ... & Journet, L. (2016). A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Molecular microbiology, 99(6), 1099-1118.
dc.relationFlaugnatti, N., Rapisarda, C., Rey, M., Beauvois, S. G., Nguyen, V. A., Canaan, S., Durand, E., Chamot, R. J., Cascales, E., Fronzes, R., & Journet, L. (2020). Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO Journal, 39(11), 1-14.
dc.relationGarcía-Bayona, L., & Comstock, L. E. (2018). Bacterial antagonism in host-associated microbial communities. Science (New York, N.Y.), 361(6408). https://doi.org/10.1126/science.aat2456
dc.relationGuttman, D.S. and Greenberg, J.T. (2001) Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol. Plant-Microbe Interact. 14, 145-155.
dc.relationHan, Y., Wang, T., Chen, G., Pu, Q., Liu, Q., Zhang, Y., Xu, L., Wu, M., & Liang, H. (2019). A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathogens, 15(12), 1-25. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1371/journal.ppat.1008198
dc.relationHauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., & Gerdes, K. (2015). Recent functional insights into the role of (p) ppGpp in bacterial physiology. Nature Reviews Microbiology, 13(5), 298-309.
dc.relationHe, Y., Hara, H., & Núñez, G. (2016). Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41(12), 1012-1021. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.tibs.2016.09.002
dc.relationHeisler, D. B., Kudryashova, E., Grinevich, D. O., Suarez, C., Winkelman, J. D., Birukov, K. G., et al. (2015). Actin-directed toxin. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 349, 535-539. doi: 10.1126/science.aab4090
dc.relationHernandez, R. E., Gallegos, M. R., & Coulthurst, S. J. (2020). Type VI secretion system effector proteins: Effective weapons for bacterial competitiveness. Cellular Microbiology, 22(9), 1-9. https://doi.org/10.1111/cmi.13241
dc.relationHersch, S. J., Watanabe, N., Stietz, M. S., Manera, K., Kamal, F., Burkinshaw, B., Lam, L., Pun, A., Li, M., Savchenko, A., & Dong, T. G. (2020). Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nature Microbiology, 5(5), 706. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41564-020-0672-6
dc.relationHood, R. D., Singh, P., Hsu, F., Güvener, T., Carl, M. A., Trinidad, R. R. S., Silverman, J. M., Ohlson, B. B., Hicks, K. G., Plemel, R. L., Li, M., Schwarz, S., Wang, W. Y., Merz, A. J., Goodlett, D. R., & Mougous, J. D. (2010). A Type VI Secretion System of Pseudomonas aeruginosa Targets a Toxin to Bacteria. Cell Host & Microbe, 7(1), 25-37. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2009.12.007
dc.relationHsiao-Han Lin, Manda Yu, Manoj Kumar Sriramoju, Shang-Te Danny Hsu, Chi-Te Liu, & Erh-Min Lai. (2020). A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03077
dc.relationInnerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology, 77(10), 3202-3210. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1128/AEM.00133-11
dc.relationIshikawa, T., Sabharwal, D., Milton, D. L., Uhlin, B. E., Wai, S. N., Bröms, J., & Sjöstedt, A. (2012). Pathoadaptive conditional regulation of the type VI secretion system in vibrio cholerae O1 strains. Infection and Immunity, 80(2), 575-584. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1128/IAI.05510-11
dc.relationJacobs, A.C., Hood, I., Boyd, K.L., Olson, P.D., Morrison, J.M., Carson, S., Sayood, K., Iwen, P.C., Skaar, E.P., and Dunman, P.M. (2010). Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect. Immun. 78, 1952-1962.
dc.relationJana, B., Fridman, C., Bosis, E. & Salomon, D. (2019). A modular effector with a DNase domain and a marker for T6SS substrates. Nature Communications, 10(1), 1-12. https://doi.org/10.1038/s41467-019-11546-6
dc.relationJiang, F., Waterfield, N. R., Yang, J., Yang, G., & Jin, Q. (2014). A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host & Microbe, 15(5), 600-610. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2014.04.010
dc.relationJiang, F., Wang, X., Wang, B., Chen, L., Zhao, Z., Waterfield, N., Yang, G. & Jin, Q. (2016). The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Reports, 16(6), 1502-1509. https://doi.org/10.1016/j.celrep.2016.07.012
dc.relationKelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2018). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/nprot.2015.053
dc.relationKierbel, A., Gassama-Diagne, A., Mostov, K., and Engel, J.N. (2005). The phosphoinositol- 3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol. Biol. Cell 16, 2577-2585.
dc.relationKim, N., Kim, J. J., Kim, I., Mannaa, M., Park, J., Kim, J., Lee, H., Lee, S., Park, D., Sul, W. J., & Seo, Y. (2020). Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence. Molecular Plant Pathology, 21(8), 1055-1069. https://doi.org/10.1111/mpp.12966
dc.relationKoebnik, R., Kruger, A., Thieme, F., Urban, A., & Bonas, U. (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. Journal of bacteriology, 188(21), 7652-7660.
dc.relationKoskiniemi, S., Lamoureux, J., Nikolakakis, K. Claire t'Kint de Roodenbeke, Michael D. Kaplan, David A. Low, Christopher S. Hayes, Sanna Koskiniemi, James G. Lamoureux, Kiel C. Nikolakakis, Claire t'Kint de Roodenbeke, Michael D. Kaplan, David A. Low, & Christopher S. Hayes. (2013). Rhs proteins from diverse bacteria mediate intercellular competition. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 7032-7037.
dc.relationKvitko, B. H., Ramos, A. R., Morello, J. E., Oh, H. S., & Collmer, A. (2007). Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. Journal of Bacteriology, 189(22), 8059-8072.
dc.relationKvitko, B. H., Park, D. H., Velásquez, A. C., Wei, C. F., Russell, A. B., Martin, G. B., ... & Collmer, A. (2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathogens, 5(4), e1000388.
dc.relationLaCourse, K. D., Peterson, S. B., Kulasekara, H. D., Radey, M. C., Kim, J., & Mougous, J. D. (2018). Conditional toxicity and synergy drive diversity among antibacterial effectors. Nature microbiology, 3(4) , 440-446.
dc.relationLaubacher, M. E. & Ades, S. E. (2008). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065-2074.
dc.relationLeiman, P., Basler, M., Ramagopal, U., Jeffrey B. Bonanno, J. Michael Sauder, Stefan Pukatzki, Stephen K. Burley, Steven C. Almo, & John J. Mekalanos. (2009). Type VI Secretion Apparatus and Phage Tail-Associated Protein Complexes Share a Common Evolutionary Origin. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4154-4159. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1073/pnas.0813360106
dc.relationLeung, K. Y., Siame, B. A., Tenkink, B. J., Noort, R. J., & Mok, Y.-K. (2012). Edwardsiella tarda - Virulence mechanisms of an emerging gastroenteritis pathogen. Microbes and Infection, 14(1), 26-34. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.micinf.2011.08.005
dc.relationLi, J., Deng, Z., Ou, H.-Y., Yao, Y., Xu, H. H., Hao, L., & Rajakumar, K. (2015). SecReT6: A web-based resource for type VI secretion systems found in bacteria. Environmental Microbiology, 17(7), 2196-2202.
dc.relationLi, C., Zhu, L., Wang, D., Wei, Z., Hao, X., Wang, Z., ... & Shen, X. (2021). T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. The ISME journal, 1-11.
dc.relationLien, Y & Lai, E. (2017). Type VI Secretion Effectors: Methodologies and Biology. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00254
dc.relationLin, J., Zhang, W., Cheng, J., Yang, X., Zhu, K., Wang, Y., ... & Shen, X. (2017). A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nature communications, 8(1), 1-12.
dc.relationLin, L., Ringel, P. D., Vettiger, A., Dürr, L., & Basler, M. (2019). DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi. Cell Reports, 29(6), 1633-1644. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.celrep.2019.09.083
dc.relationLiu, L., Hao, S., Lan, R., Wang, G., Xiao, D., Sun, H., & Xu, J. (2015). The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to adhesion and cytotoxicity to host cells. Infection and immunity, 83(7), 2596-2604.
dc.relationLiu, K., Bittner, A. N., & Wang, J. D. (2015). Diversity in (p) ppGpp metabolism and effectors. Current opinion in microbiology, 24, 72-79.
dc.relationLiu, L., Song, L., Deng, R., Lan, R., Jin, W., Tran Van Nhieu, G., Cao, H., Liu, Q., Xiao, Y., Li, X., Meng, G., & Ren, Z. (2021). Citrobacter freundii Activation of NLRP3 Inflammasome via the Type VI Secretion System. The Journal of Infectious Diseases, 223(12), 2174-2185. https://doi.org/10.1093/infdis/jiaa692
dc.relationLozano, J. C. (1986). Cassava bacterial blight: a manageable disease. Plant Dis, 70(12), 1989-1993.
dc.relationMa, L.-S., Hachani, A., Lin, J.-S., Filloux, A., and Lai, E.-M. (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16: 94-104.
dc.relationMacIntyre, D., Miyata, S., Kitaoka, M., Pukatzki, S. & Mekalanos, J. (2010). The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19520-19524.
dc.relationMan, S. M., & Kanneganti, T.-D. (2015). Regulation of inflammasome activation. Immunological Reviews, 265(1), 6-21. https://doi.org/10.1111/imr.12296
dc.relationMariano, G., Monlezun, L., & Coulthurst, S. J. (2018). Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition. Cell Reports, 22(3), 774-785.
dc.relationMcDermott, J. E., Cort, J. R., Nakayasu, E. S., Pruneda, J. N., Overall, C., & Adkins, J. N. (2019). Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting. PeerJ, 7, e7055.
dc.relationMcKenna, A., Zeeshan U., Carmel K., Linton, M., William T. Sloan, Brian D. Green, Ursula Lavery, Nick Dorrell, Brendan W. Wren, Anne Richmond, Nicolae Corcionivoschi, & Ozan Gundogdu. (2020). Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome, 8(1), 1-13. https://doi.org/10.1186/s40168-020-00908-8
dc.relationMaculins, T., Fiskin, E., Bhogaraju, S., & Dikic, I. (2016). Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell research, 26(4), 499-510.
dc.relationMedina, C. A., Reyes, P. A., Trujillo, C. A., Gonzalez, J. L., Bejarano, D. A., Montenegro, N. A., & Bernal, A. (2018). The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular plant pathology, 19(3), 593-606.
dc.relationMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412-D419.
dc.relationMitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., ... & Finn, R. D. (2019). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic acids research, 47(D1), D351-D360.
dc.relationMiyata, S. T., Unterweger, D., Rudko, S. P., & Pukatzki, S. (2013). Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathogens, 9(12), 1-18. https://doi.org/10.1371/journal.ppat.1003752
dc.relationMyint, S. L., Zlatkov, N., Aung, K. M., Toh, E., Sjöström, A., Nadeem, A., ... & Wai, S. N. (2021). Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae. Biochimica et Biophysica Acta (BBA)-General Subjects, 1865(7), 129912.
dc.relationMoltke, J., Ayres, J. S., Kofoed, E. M., Chavarría-Smith, J., & Vance, R. E. (2013). Recognition of bacteria by inflammasomes. Annual Review of Immunology, 31, 73-106. https://doi.org/10.1146/annurev-immunol-032712-095944
dc.relationMontenegro, N. A., Alvarez, A., Arrieta-Ortiz, M. L., Rodriguez-R, L. M., Botero, D., Tabima, J. F., ... & Bernal, A. (2021). The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility. BMC microbiology, 21(1), 1-12.
dc.relationMougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., ... & Mekalanos, J. J. (2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 312(5779), 1526-1530.
dc.relationNguyen, V. S., Douzi, B., Durand, E., Roussel, A., Cascales, E., & Cambillau, C. (2018). Towards a complete structural deciphering of Type VI secretion system. Current Opinion in Structural Biology, 49, 77-84. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.sbi.2018.01.007
dc.relationNguyen, L., Pinedo, V., Lopez, J., Cava, F., & Feldman, M. F. (2021). Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. BioRxiv.
dc.relationOsipiuk J., Xu X., Cui H., Savchenko A., Edwards A., Joachimiak A. 2011. Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J. Struct. Funct. Genom. 12, 21-2610.1007/s10969-011-9107-1 doi:10.1007/s10969-011-9107-1.
dc.relationPoplawsky, A. R., Urban, S. C., & Chun, W. (2000). Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris. Applied and environmental microbiology, 66(12), 5123-5127.
dc.relationPruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28(14), 1823-1829. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1093/bioinformatics/bts252
dc.relationPukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., ... & Mekalanos, J. J. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences, 103(5), 1528-1533.
dc.relationQuentin, D., Ahmad, S., Shanthamoorthy, P., Mougous, J. D., Whitney, J. C., & Raunser, S. (2018). Mechanism of loading and translocation of type VI secretion system effector Tse6. Nature Microbiology, 3(10), 1142. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41564-018-0238-z
dc.relationR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relationRay, A., de Souza Santos, M., Zhang, J., Orth, K., Schwartz, N., & Salomon, D. (2017). Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Reports, 18(11), 1978-1990. https://doi-org.ezproxy.uniandes.edu.co:8443/10.15252/embr.201744226
dc.relationRobinson, L., Liaw, J., Omole, Z., Xia, D., Van Vliet, A. H., Corcionivoschi, N., ... & Gundogdu, O. (2021). Bioinformatic analysis of the Campylobacter jejuni Type VI Secretion System and effector prediction. Frontiers in microbiology, 12, 1751.
dc.relationRoy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725-738. doi:10.1038/nprot.2010.5
dc.relationRuhl, S. and Broz, P. (2015). Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur J Immunol; 45:2927-2936.
dc.relationRussell, A. B., Hood, R. D., Bui, N. K., LeRoux, M., Vollmer, W., & Mougous, J. D. (2011). Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 475(7356), 343-347. https://doi.org/10.1038/nature10244
dc.relationRussell, A. B., LeRoux, M., Hathazi, K., Agnello, D. M., Ishikawa, T., Wiggins, P. A., Wai, S. N., & Mougous, J. D. (2013). Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 496(7446), 508-512. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/nature12074
dc.relationRussell, A. B., Peterson, S. B., & Mougous, J. D. (2014). Type VI secretion system effectors: poisons with a purpose. Nature Reviews Microbiology, 12(2), 137-148. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/nrmicro3185
dc.relationRussell, A. B., Wexler, A. G., Harding, B. N., Whitney, J. C., Bohn, A. J., Goo, Y. A., Tran, B. Q., Barry, N. A., Zheng, H., Peterson, S. B., Chou, S., Gonen, T., Goodlett, D. R., Goodman, A. L., & Mougous, J. D. (2014). A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host & Microbe, 16(2), 227-236. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2014.07.007
dc.relationSavary, S., Ficke, A., Aubertot, J.N., Hollier, C. 2012. Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security, Springer.
dc.relationSchnappauf, O., Chae, J. J., Kastner, D. L., & Aksentijevich, I. (2019). The pyrin inflammasome in health and disease. Frontiers in immunology, 10, 1745.
dc.relationSchneider, J. P., Nazarov, S., Adaixo, R., Liuzzo, M., Ringel, P. D., Stahlberg, H., & Basler, M. (2019). Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems. The EMBO journal, 38(18), e100825.
dc.relationSchneider, M. M., Buth, S. A., Ho, B. T., Basler, M., Mekalanos, J. J., & Leiman, P. G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 500(7462), 350-353. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/nature12453
dc.relationSelvy, P. E., Lavieri, R. R., Lindsley, C. W., & Brown, H. A. (2011). Phospholipase D: Enzymology, Functionality, and Chemical Modulation. Chemical Reviews, 111(10), 6064-6119.
dc.relationSi Meiru, Zhao Chao, Burkinshaw Brianne, Zhang Bing, Wei Dawei, Wang Yao, Dong Tao G., Shen Xihui, Si, M., Zhao, C., Burkinshaw, B., Zhang, B., Wei, D., Wang, Y., Dong, T. G., & Shen, X. (2017). Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proceedings of the National Academy of Sciences of the United States of America, 114(11), E2233-E2242.
dc.relationSi, M., Wang, Y., Zhang, B., Zhao, C., Kang, Y., Bai, H., Wei, D., Zhu, L., Zhang, L., Dong, T. G., & Shen, X. (2017). The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Reports, 20(4), 949-959. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.celrep.2017.06.081
dc.relationSievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 1-N.PAG. https://doi.org/10.1038/msb.2011.75
dc.relationSkjerning, R. B., Senissar, M., Winther, K. S., Gerdes, K. & Brodersen, D. E. (2019). The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD+. Mol. Microbiol. 111, 221-236. https ://doi.org/10.1111/mmi.14150
dc.relationSong, L., Pan, J., Yang, Y., Zhang, Z., Cui, R., Jia, S., Wang, Z., Yang, C., Xu, L., Dong, T. G., Wang, Y., & Shen, X. (2021). Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nature Communications, 12(1). https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41467-020-20726-8
dc.relationSteinchen, W., Ahmad, S., Valentini, M., Eilers, K., Majkini, M., Altegoer, F., Lechner, M., Filloux, A., Whitney, J. C., & Bange, G. (2021). Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism. Molecular Microbiology, 115(6), 1339-1356. https://doi.org/10.1111/mmi.14684
dc.relationTanaka, S., Maeda, Y., Tashima, Y., & Kinoshita, T. (2004). Inositol Deacylation of Glycosylphosphatidylinositol-anchored Proteins Is Mediated by Mammalian PGAP1 and Yeast Bst1p. Journal of Biological Chemistry, 279(14), 14256-14263. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1074/jbc.M313755200
dc.relationTing, J. P.-Y., Lovering, R. C., Alnemri, E. S., Bertin, J., Boss, J. M., Davis, B. K., Flavell, R. A., Girardin, S. E., Godzik, A., Harton, J. A., Hoffman, H. M., Hugot, J.-P., Inohara, N., MacKenzie, A., Maltais, L. J., Nunez, G., Ogura, Y., Otten, L. A., Philpott, D., ¿ Ward, P. A. (2008). The NLR Gene Family: A Standard Nomenclature. Immunity, 28(3), 285-287.
dc.relationTrunk, K., Peltier, J., Liu, Y.-C., Dill, B. D., Walker, L., Gow, N. A. R., Stark, M. J. R., Quinn, J., Strahl, H., Trost, M., & Coulthurst, S. J. (2018). The type VI secretion system deploys antifungal effectors against microbial competitors. Nature Microbiology, 3(8), 920. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1038/s41564-018-0191-x
dc.relationUnterweger, D., Kitaoka, M., Miyata, S. T., Bachmann, V., Brooks, T. M., Moloney, J., Sosa, O., Silva, D., Duran-Gonzalez, J., Provenzano, D., & Pukatzki, S. (2012). Constitutive Type VI Secretion System Expression Gives Vibrio cholerae Intra- and Interspecific Competitive Advantages. PLoS ONE, 7(10), 1-11. https://doi.org/10.1371/journal.pone.0048320
dc.relationVerster, A. J., Ross, B. D., Radey, M. C., Bao, Y., Goodman, A. L., Mougous, J. D., & Borenstein, E. (2017). The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition. Cell Host & Microbe, 22(3), 411-419. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.chom.2017.08.010
dc.relationWan, B., Zhang, Q., Ni, J., Li, S., Wen, D., Li, J., et al. (2017). Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13:e1006246. doi: 10.1371/journal.ppat.1006246
dc.relationWang, T., Si, M., Song, Y., Zhu, W., Gao, F., Wang, Y., ... & Shen, X. (2015). Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS pathogens, 11(7), e1005020.
dc.relationWang, J., Yang, B., Leier, A., Marquez-Lago, T. T., Hayashida, M., Rocker, A., ... & Lithgow, T. (2018). Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics, 34(15), 2546-2555.
dc.relationWang, N., Han, N., Tian, R., Chen, J., Gao, X., Wu, Z., Liu, Y., & Huang, L. (2021). Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker. Frontiers in Microbiology, 11, N.PAG.
dc.relationWar, F. & Joshi, S. (2014). Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista de Biología Tropical, 62(4), 1295-1308.
dc.relationWettstadt, S., Wood, T., Fecht, S. & Filloux, A. (2019). Delivery of the Pseudomonas aeruginosa Phospholipase Effectors PldA and PldB in a VgrG- and H2-T6SS-Dependent Manner. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01718
dc.relationWexler Aaron G., Bao Yiqiao, Whitney John C., Bobay Louis-Marie, Xavier Joao B., Schofield Whitman B., Barry Natasha A., Russell Alistair B., Tran Bao Q., Goo Young Ah, Goodlett David R., Ochman Howard, Mougous Joseph D., Goodman Andrew L., Wexler, A. G., Bao, Y., Whitney, J. C., Bobay, L.-M., Xavier, J. B., ... Goodman, A. L. (2016). Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proceedings of the National Academy of Sciences of the United States of America, 113(13), 3639-3644.
dc.relationWhitney, J. C., Quentin, D., Sawai, S., LeRoux, M., Harding, B. N., Ledvina, H. E., Tran, B. Q., Robinson, H., Goo, Y. A., Goodlett, D. R., Raunser, S., & Mougous, J. D. (2015). An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells. Cell, 163(3), 607-619. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.cell.2015.09.027
dc.relationWood, T. E., Howard, S. A., Wettstadt, S., & Filloux, A. (2019). PAAR proteins act as the 'sorting hat' of the type VI secretion system. Microbiology, 165, 1203-1218.
dc.relationYadav, S. K., Magotra, A., Ghosh, S., Krishnan, A., Pradhan, A., Kumar, R., ... & Jha, G. (2021). Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO reports, 22(6), e51857.
dc.relationYu, M., Wang, Y.-C., Huang, C.-J., Ma, L.-S., & Lai, E.-M. (2021). Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. Journal of Bacteriology, 203(3). https://doi.org/10.1128/JB.00490-20
dc.relationZárate-Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular Plant Pathology. https://doi.org/10.1111/mpp.13094
dc.relationZarei, S., Taghavi, S. M., Hamzehzarghani, H., Osdaghi, E., & Lamichhane, J. R. (2018). Epiphytic growth of Xanthomonas arboricola and Xanthomonas citri on non-host plants. Plant Pathology, 67(3), 660-670.
dc.relationZhang, H., Su, X.-D., Gao, Z.-Q., & Dong, Y.-H. (2012). Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Letters, 586(19), 3193-3199.
dc.relationZhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational biology, 7(1-2), 203-214.
dc.relationZhu, P.-C., Li, Y.-M., Yang, X., Zou, H.-F., Zhu, X.-L., Niu, X.-N., Xu, L.-H., Jiang, W., Huang, S., Tang, J.-L., & He, Y.-Q. (2020). Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola. Research in Microbiology, 171(2), 64-73. https://doi-org.ezproxy.uniandes.edu.co:8443/10.1016/j.resmic.2019.10.004
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleRol del T6SS en Competencia Bacteriana de Xanthomonas phaseoli pv. manihotis Ante Bacterias Epífitas de Yuca (Manihot esculenta)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución