dc.contributorPradilla Raguá, Diego Camilo
dc.contributorFajardo Rojas, Jair Fernando
dc.contributorSalcedo Galán, Felipe
dc.contributorPinto Carvajal, John
dc.contributorGrupo de Diseño de Productos y Procesos
dc.creatorAyala Gómez, Diego Alejandro
dc.date.accessioned2023-07-26T14:34:24Z
dc.date.accessioned2023-09-07T01:16:13Z
dc.date.available2023-07-26T14:34:24Z
dc.date.available2023-09-07T01:16:13Z
dc.date.created2023-07-26T14:34:24Z
dc.date.issued2023-07-04
dc.identifierhttp://hdl.handle.net/1992/68772
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728217
dc.description.abstractAsphaltenes play a crucial role in the behavior of heavy crudes due to their propensity for aggregation, precipitation, and adsorption at various interfaces and surfaces. This behavior is especially significant in flow assurance, as it reduces rock permeability in reservoirs and decreases pipe diameter during transportation. Additionally, asphaltenes are known to stabilize water-in-oil (and oil-in-water) emulsions. Numerous experimental and computational studies have been conducted to investigate their behavior, but challenges arise due to variations in weight and molecular structure. In this study, molecular dynamics (MD) simulations were employed to evaluate the interfacial behavior of an asphaltene model compound (C5PeC11), considering the influence of the initial position of asphaltenes on surface pressure results compared to experimental data, as well as their behavior in adsorption at the water-decane interface and the interactions they exhibit. The MD simulations revealed that randomly inserting the asphaltene model compound provided a valuable tool for studying and characterizing natural asphaltenes. Results from the model asphaltene simulations closely reproduced experimental findings when utilizing an ordered initial insertion. Additionally, a notable energy barrier was observed in the region close to the liquid-condensed phase, which could be overcome by supplying energy to the system. This study enhances our understanding of asphaltene behavior at the water-decane interface and sheds light on their influence in the oil industry
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationBP, BP Statistical Review of World Energy 2022, BP Statistical Review of World Energy., vol. 71. pp. 1-60, 2022, [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.
dc.relationP. Xiong et al., Study on catalytic aquathermolysis of heavy oil by simple synthesis of highly dispersed nickel-loaded nitrogen-doped carbon catalysts, Mol. Catal., vol. 529, no. July, p. 112528, 2022, doi: 10.1016/j.mcat.2022.112528
dc.relationX. Tang, W. Duan, K. Xu, and C. Zheng, Three-dimensional network gel structure and viscosity reduction mechanism of heavy oil, Colloids Surfaces A Physicochem. Eng. Asp., vol. 653, p. 130060, 2022, doi: 10.1016/j.colsurfa.2022.130060.
dc.relationQ. an Xiong, Y. Zhang, Y. Huang, J. Li, and W. Zhang, Fundamental study of the integrated process of heavy oil pyrolysis and coke gasification. Part : Effect of CO and H2 in syngas atmosphere on heavy oil pyrolysis, Fuel, vol. 324, no. PB, p. 124650, 2022, doi: 10.1016/j.fuel.2022.124650.
dc.relationP. M. Spiecker, K. L. Gawrys, and P. K. Kilpatrick, Aggregation and solubility behavior of asphaltenes and their subfractions, J. Colloid Interface Sci., vol. 267, no. 1, pp. 178-193, 2003, doi: 10.1016/S0021-9797(03)00641-6.
dc.relationZ. Wang, M. Fingas, and D. S. Page, Oil spill identification, J. Chromatogr. A, vol. 843, no. 1-2, pp. 369-411, 1999, doi: https://doi.org/10.1016/S0021-9673(99)00120-X.
dc.relationD. Pradilla, S. Subramanian, S. Simon, J. Sjöblom, I. Beurroies, and R. Denoyel, Microcalorimetry Study of the Adsorption of Asphaltenes and Asphaltene Model Compounds at the Liquid-Solid Surface, Langmuir, vol. 32, no. 29, pp. 7294-7305, 2016, doi: 10.1021/acs.langmuir.6b00816.
dc.relationD. Pradilla, S. Simon, and J. Sjöblom, Mixed interfaces of asphaltenes and model demulsifiers part I: Adsorption and desorption of single components, Colloids Surfaces A Physicochem. Eng. Asp., vol. 466, pp. 45-56, 2015, doi: 10.1016/j.colsurfa.2014.10.051.
dc.relationS. Kokal, Crude-oil emulsions: A state-of-the-art review, SPE Prod. Facil., vol. 20, no. 1, pp. 5-12, 2005, doi: 10.2118/77497-pa.
dc.relationR. G. Martins, L. S. Martins, and R. G. Santos, Effects of short-chain n-alcohols on the properties of asphaltenes at toluene/air and toluene/water interfaces, Colloids and Interfaces, vol. 2, no. 2, pp. 1-9, 2018, doi: 10.3390/colloids2020013.
dc.relationC. A. Alves, J. F. Romero Yanes, F. X. Feitosa, and H. B. de Sant'Ana, Influence of asphaltenes and resins on water/model oil interfacial tension and emulsion behavior: Comparison of extracted fractions from crude oils with different asphaltene stability, J. Pet. Sci. Eng., vol. 208, 2022, doi: 10.1016/j.petrol.2021.109268.
dc.relationH. Sun, X. Li, D. Liu, and X. Li, Synergetic adsorption of asphaltenes and oil displacement surfactants on the oil-water interface: Insights on stabilization mechanism of the interfacial film, Chem. Eng. Sci., vol. 245, p. 116850, 2021, doi: 10.1016/j.ces.2021.116850.
dc.relationF. Fajardo-Rojas, O. A. Alvarez Solano, J. R. Samaniuk, and D. Pradilla, Deviation from Equilibrium Thermodynamics of an Asphaltene Model Compound during Compression-Expansion Experiments at Fluid-Fluid Interfaces, Langmuir, vol. 37, no. 5, pp. 1799-1810, 2021, doi: 10.1021/acs.langmuir.0c03151.
dc.relationF. Fajardo-Rojas, D. Pradilla, O. A. Alvarez Solano, and J. Samaniuk, Probing Interfacial Structure and Dynamics of Model and Natural Asphaltenes at Fluid-Fluid Interfaces, Langmuir, vol. 36, no. 27, pp. 7965-7979, 2020, doi: 10.1021/acs.langmuir.0c01320.
dc.relationS. Ashoorian, A. Javadi, N. Hosseinpour, and N. N. Nassar, Interrelationship of bulk and oil-water interfacial properties of asphaltenes, J. Mol. Liq., vol. 381, p. 121761, 2023, doi: 10.1016/j.molliq.2023.121761.
dc.relationJ. V. Pérez-Bejarano, F. Fajardo-Rojas, O. Alvarez, J. C. Burgos, L. H. Reyes, and D. Pradilla, Novel biosurfactants: Rationally designed surface-active peptides and in silico evaluation at the decane-water interface, Process Biochem., vol. 125, pp. 84-95, 2023, doi: 10.1016/j.procbio.2022.11.012.
dc.relationY. Mikami, Y. Liang, T. Matsuoka, and E. S. Boek, Molecular Dynamics Simulations of Asphaltenes at the Oil - Water Interface: From Nanoaggregation to Thin-Film Formation, Energy & Fuels, vol. 27, no. 4, pp. 1838-1845, 2013, doi: 10.1021/ef301610q.
dc.relationJ. W. Park and K. B. Lee, Molecular dynamics simulations of asphaltene aggregation in heavy oil system for the application to solvent deasphalting, Fuel, vol. 323, p. 124171, 2022, doi: 10.1016/j.fuel.2022.124171.
dc.relationA. Eftekhari, J. S. Amin, and S. Zendehboudi, A molecular dynamics approach to investigate effect of pressure on asphaltene self-aggregation, J. Mol. Liq., vol. 376, p. 121347, 2023, doi: 10.1016/j.molliq.2023.121347.
dc.relationX. Liu et al., Effect of Temperature on the Aggregation Kinetic and Interaction Mode of Asphaltene in Toluene-Heptane System at Molecular Level Using Molecular Dynamics (MD) Simulation, J. Mol. Liq., vol. 384, p. 122167, 2023, doi: 10.1016/j.molliq.2023.122167.
dc.relationW. Wang et al., Nanoaggregates of Diverse Asphaltenes by Mass Spectrometry and Molecular Dynamics, Energy \& Fuels, vol. 31, no. 9, pp. 9140-9151, 2017, doi: 10.1021/acs.energyfuels.7b01420.
dc.relationL. G. Celia-Silva, P. B. Vilela, P. Morgado, E. F. Lucas, L. F. G. Martins, and E. J. M. Filipe, Preaggregation of Asphaltenes in the Presence of Natural Polymers by Molecular Dynamics Simulation, Energy \& Fuels, vol. 34, no. 2, pp. 1581-1591, 2020, doi: 10.1021/acs.energyfuels.9b03703.
dc.relationM. Rahmati, Effects of heteroatom and aliphatic chains of asphaltene molecules on their aggregation properties in aromatics Solvents: A molecular dynamics simulation study, Chem. Phys. Lett., vol. 779, p. 138847, 2021, [Online]. Available: https://doi.org/10.1016/j.cplett.2021.138847.
dc.relationE. L. Nordgård and J. Sjöblom, Model Compounds for Asphaltenes and C80 Isoprenoid Tetraacids. Part I: Synthesis and Interfacial Activities., J. Dispers. Sci. Technol., vol. 29, no. 8, pp. 1114-1122, 2008, doi: 10.1080/01932690701817818.
dc.relationD. Pradilla, S. Simon, J. Sjöblom, J. Samaniuk, M. Skrzypiec, and J. Vermant, Sorption and Interfacial Rheology Study of Model Asphaltene Compounds, Langmuir, vol. 32, no. 12, pp. 2900-2911, 2016, doi: 10.1021/acs.langmuir.6b00195.
dc.relationA. Internanitional, ASTM D664-18e2 Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, Annu. B. ASTM Stand., 2018, doi: 10.1520/D0664-18E01.
dc.relationE. I. 469 Institute, Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection, Energy Inst. Publ. United Kingdom, 2006.
dc.relationA. International, ASTM D7042-9 Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer ( and the Calculation of Kinematic Viscosity ), Annu. B. ASTM Stand., 2019, doi: 10.1520/D7042-14.2.
dc.relationA. International, ASTM D3279-12 Standard Test Method for n-Heptane Insolubles; West Conshohocken, West Conshohocken, PA, vol. 4, 2012, [Online]. Available: https://doi.org/10.1520/D3279-12.
dc.relationE. F. Pettersen et al., UCSF Chimera--a visualization system for exploratory research and analysis., J. Comput. Chem., vol. 25, pp. 1605-1612, 2004, doi: 10.1002/jcc.20084
dc.relationE. J. Haug, J. S. Arora, and K. Matsui, A steepest-descent method for optimization of mechanical systems, J. Optim. Theory Appl., vol. 19, no. 3, pp. 401-424, 1976, doi: 10.1007/BF00941484
dc.relationT. L. Hill, An introduction to statistical thermodynamics. D. Publications, 1960.
dc.relationG. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys., vol. 126, 2007, doi: 10.1063/1.2408420.
dc.relationH. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys., vol. 81, no. 8, pp. 3684-3690, 1984, [Online]. Available: https://doi.org/10.1063/1.448118.
dc.relationM. Parrinello and A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., vol. 52, no. 12, pp. 7182-7190, 1981, [Online]. Available: https://doi.org/10.1063/1.328693.
dc.relationW. L. Jorgensen and J. Tirado-Rives, Potential energy functions for atomic-level simulations of water and organic and biomolecular systems, Proc. Natl. Acad. Sci., vol. 102, pp. 6665-6670, 2005, doi: 10.1073/pnas.0408037102.
dc.relationL. S. Dodda, J. Z. Vilseck, J. Tirado-Rives, and W. L. Jorgensen, 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations, J. Phys. Chem. B, vol. 121, no. 15, pp. 3864-3870, 2017, doi: 10.1021/acs.jpcb.7b00272.
dc.relationL. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, and W. L. Jorgensen, LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands, Nucleic Acids Res., vol. 45, pp. 331-336, 2017, doi: 10.1093/nar/gkx312.
dc.relationH. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem., vol. 91, no. 24, pp. 62696271, 1987, doi: 10.1021/j100308a038.
dc.relationS. Zeppieri, J. Rodríguez, and A. L. López De Ramos, Interfacial tension of alkane + water systems, J. Chem. Eng. Data, vol. 46, no. 5, pp. 1086-1088, 2001, doi: 10.1021/je000245r.
dc.relationY. F. Hifeda and G. W. Rayfield, Evidence for first-order phase transitions in lipid and fatty acid monolayers, Langmuir, vol. 8, pp. 197-200, 1992, doi: 10.1021/la00037a036.
dc.relationS. K. Kale, A. J. Cope, D. M. Goggin, and J. R. Samaniuk, A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy, J. Colloid Interface Sci., vol. 582, pp. 1085-1098, 2021, doi: 10.1016/j.jcis.2020.08.053.
dc.relationJ. Halliday, D., Resnick, R., & Walker, Fundamentals of physics. John Wiley & Sons., 2013.
dc.relationL. Minitab, Minitab. 2021, [Online]. Available: https://www.minitab.com.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleCharacterizing the behavior of asphaltenes at the water-decane interface: a Molecular Dynamics simulation approach
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución