dc.contributor | Lasso de Paulis, Eloisa | |
dc.contributor | Bernal Giraldo, Adriana Jimena | |
dc.contributor | ECOFIV | |
dc.contributor | LIMMA | |
dc.creator | Racedo Pulido, Camilo | |
dc.date.accessioned | 2023-08-04T16:43:41Z | |
dc.date.accessioned | 2023-09-07T01:07:39Z | |
dc.date.available | 2023-08-04T16:43:41Z | |
dc.date.available | 2023-09-07T01:07:39Z | |
dc.date.created | 2023-08-04T16:43:41Z | |
dc.date.issued | 2023-08-03 | |
dc.identifier | http://hdl.handle.net/1992/69224 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728116 | |
dc.description.abstract | El cambio climático es uno de los retos actuales más importantes debido a los potenciales efectos adversos en la disponibilidad de agua y el crecimiento de cultivos y, por ende, en nuestra seguridad alimentaria. El cultivo de maíz es el tercer cultivo más importante a nivel global y se ve gravemente afectado por períodos de sequía que reducen su productividad. Para asegurar nuestro futuro alimenticio debemos explorar estrategias de cultivo que aseguren mantener la productividad aún en escenarios de sequía. En este trabajo evaluamos la capacidad de la variedad del maíz 'porva' de crecer bajo sequía al ser inoculado con una bacteria promotora de crecimiento vegetal (PGPB), de forma que se pueda determinar su comportamiento ante el estrés hídrico y si la presencia de esta bacteria logra aliviar el estrés hídrico. Se tomaron medidas fisiológicas como fluorescencia (Fv/Fm), conductancia estomática (gs) y potencial hídrico, así como mediciones de área foliar y peso seco tanto de la parte aérea como de raíz. En respuesta al tratamiento de sequía las plantas disminuyeron la eficiencia del fotosistema PSII detectado por medio de fluorescencia, disminuyeron su conductancia estomática y tuvieron valores más negativos de potencial hídrico. Sin embargo, no se detectó ningún efecto asociado a la PGPB indicando que la bacteria no alivió el estrés hídrico. Se observó que las medidas de área foliar y peso seco no fueron significativamente diferentes entre los tratamientos, indicando que 21 días de sequía no afectan el crecimiento de esta variedad de maíz. Nuestros resultados sugieren que la variedad de maíz 'porva' sería una buena variedad para ser utilizado en climas áridos o en condiciones de cambio climático. Sin embargo, es necesario realizar más ensayos para poder comprobar la efectividad de esta variedad hasta la producción del grano. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Biología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Ciencias Biológicas | |
dc.relation | Ahmed, I., Ullah, A., Rahman, M. M., Ahmad, B., Wajid, S., Ahmad, A., & Ahmed, S. (2019). Climate Change Impacts and Adaptation Strategies for Agronomic Crops. En IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.82697 | |
dc.relation | Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. Springer. | |
dc.relation | Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0 | |
dc.relation | Badr, A. N., & Brüggemann, W. (2020). Special issue in honour of Prof. Reto J. Strasser - Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica, 58, 638-645. https://doi.org/10.32615/ps.2020.014 | |
dc.relation | Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140 | |
dc.relation | Bevivino, A. (1998). Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225-237. https://doi.org/10.1016/s0168-6496(98)00069-5 | |
dc.relation | Bhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 127(3), 353-359. https://doi.org/10.1111/j.1399-3054.2006.00718.x | |
dc.relation | Boyes, D., Zayed, A., Ascenzi, R., McCaskill, A. J., Hoffman, N. R., Davis, K. L., & Görlach, J. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis. The Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/tpc.010011 | |
dc.relation | Breedt, G., Labuschagne, N., & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, 171(2), 229-236. https://doi.org/10.1111/aab.12366 | |
dc.relation | Calvo, P., Nelson, L. M., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8 | |
dc.relation | Chen, D., Wang, S., Beibei, C., Cao, D., Leng, G., Li, H., Yin, L., Shan, L., & Deng, X. (2016). Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01241 | |
dc.relation | Chitara, M. K., Chauhan, S., & Singh, R. (2021). Bioremediation of Polluted Soil by Using Plant Growth-Promoting Rhizobacteria. Microorganisms for sustainability, 203-226. https://doi.org/10.1007/978-981-15-7447-4_8 | |
dc.relation | CIMMYT & CIAT. (2019). Maize for Colombia 2030 vision. https://repository.cimmyt.org/handle/10883/20382 | |
dc.relation | Dane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4: Physical Methods: 20. Acsess. | |
dc.relation | Dasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. K., & Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. Elsevier eBooks, 1-26. https://doi.org/10.1016/b978-0-12-822098-6.00001-x | |
dc.relation | Davoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., & Musat, N. (2020). High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLOS ONE, 15(11), e0242247. https://doi.org/10.1371/journal.pone.0242247 | |
dc.relation | De Araujo, V. A., De Andrade Lira, M., De Souza Júnior, V. S., De Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., De Araujo Pereira, A. P., Júnior, J. O. C. A., Barros, F. M. D. R., & Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564 | |
dc.relation | De Redactores Legis, E. (2022). Importaciones de maíz en Colombia. Legis blog. https://blog.legis.com.co/comercio-exterior/importaciones-de-maiz-en-colombia | |
dc.relation | Desbrosses, G., Contesto, C., Varoquaux, F., Galland, M., & Touraine, B. (2009). PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signaling & Behavior, 4(4), 319-321. https://doi.org/10.4161/psb.4.4.8106 | |
dc.relation | Djaman, K., Allen, S. M., Djaman, D. F., Koudahe, K., Irmak, S., Puppala, N., Darapuneni, M. K., & Angadi, S. V. (2021). Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417 | |
dc.relation | Edreira, J. I. R., Çarpici, E. B., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. https://doi.org/10.1016/j.fcr.2011.04.015 | |
dc.relation | Efeoglu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75(1), 34-42. https://doi.org/10.1016/j.sajb.2008.06.005 | |
dc.relation | EPA (2023). Causes of Climate Change | US EPA. (2023, April 24). US EPA. https://www.epa.gov/climatechange-science/causes-climate-change | |
dc.relation | Gao, J., Yang, M., Wei, Y., Huang, Y., Zhang, H., He, W., Sheng, H., & An, L. (2019). Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnology & Biotechnological Equipment. https://doi.org/10.1080/13102818.2019.1629841 | |
dc.relation | Gezahegn, A. M. (2021). Role of Integrated Nutrient Management for Sustainable Maize Production. International Journal of Agronomy, 2021, 1-7. https://doi.org/10.1155/2021/9982884 | |
dc.relation | Gleason, S. M., Cooper, M. A., Wiggans, D. R., Bliss, C. A., Romay, M. C., Gore, M. A., Mickelbart, M. V., Topp, C. N., Zhang, H., Hansen, N. C., & Comas, L. H. (2019). Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 234, 119-128. https://doi.org/10.1016/j.fcr.2019.02.001 | |
dc.relation | Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01506 | |
dc.relation | Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D. R., Thomson, A. M., & Wolfe, D. A. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351-370. https://doi.org/10.2134/agronj2010.0303 | |
dc.relation | Imadi, S. R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad, P. (2016). Water stress. John Wiley & Sons, Ltd eBooks, 343-355. https://doi.org/10.1002/9781119054450.ch21 | |
dc.relation | IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report.A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, (in press). | |
dc.relation | Jägerbrand, A. K., & Kudo, G. (2016). Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan. Plants, 5(2), 22. https://doi.org/10.3390/plants5020022 | |
dc.relation | Jeanguenin, L., Mir, A. P., & Chaumont, F. (2017). Uptake, Loss and Control. En Elsevier eBooks (pp. 135-140). https://doi.org/10.1016/b978-0-12-394807-6.00087-3 | |
dc.relation | Kang, Y., Khan, S. & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security - A review. Progress in Natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001 | |
dc.relation | Kar, M. M., & Raichaudhuri, A. (2021). Overview of Arabidopsis as a Genetics Model System and Its Limitation, Leading to the Development of Emerging Plant Model Systems. IntechOpen eBooks. https://doi.org/10.5772/intechopen.99818 | |
dc.relation | Maazou, A. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (<i>Zea mays</i> L.). American Journal of Plant Sciences, 07(14), 1858-1870. https://doi.org/10.4236/ajps.2016.714172 | |
dc.relation | Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846 | |
dc.relation | Min, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., Liu, X., Hao, D., Chen, H., & Xie, Q. (2016). Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01080 | |
dc.relation | Murashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x | |
dc.relation | Naseem, H., Ahsan, M., Shahid, M., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009-1022. https://doi.org/10.1002/jobm.201800309 | |
dc.relation | Navarro Cerrillo, Rafael & Ariza, David & Maldonado Rodriguez, Ronald. (2004). Chlorophyll Fluorescence Response in Five Provenances of Pinus Pinus halepensis Mill. to Drought Stress. Cuadernos de la Sociedad Española de Ciencias Forestales. 17. 69-74. | |
dc.relation | Notununu, I., Moleleki, L. N., Roopnarain, A., & Adeleke, R. (2022). Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 32(1), 90-106. https://doi.org/10.1016/s1002-0160(21)60051-6 | |
dc.relation | O'Callaghan, K. J., Dixon, R. A., & Cocking, E. C. (2001). Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Functional Plant Biology, 28(9), 975. https://doi.org/10.1071/pp01048 | |
dc.relation | Pereira, S. A., Abreu, D., Ditroilo, M., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106 | |
dc.relation | Prasad, M., Srinivasan, R., Chaudhary, M. K., Choudhary, M., & Jat, L. K. (2019). Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. Elsevier eBooks, 129-157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0 | |
dc.relation | Ren, X., Sun, D., & Wang, Q. (2016). Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40-48. https://doi.org/10.1016/j.agwat.2016.03.014 | |
dc.relation | Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. Springer eBooks, 181-196. https://doi.org/10.1007/978-3-030-48771-3_11 | |
dc.relation | RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/. | |
dc.relation | Ryu, C., Hu, C., Locy, R. D., & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285-292. https://doi.org/10.1007/s11104-004-0301-9 | |
dc.relation | Santos, R. A. D., Díaz, P., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in sustainable food systems, 4. https://doi.org/10.3389/fsufs.2020.00136 | |
dc.relation | Schneider, C.A., Rasband, W.S., Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012 | |
dc.relation | Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M. A., Zajonc, J., & Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in sustainable food systems, 5. https://doi.org/10.3389/fsufs.2021.667546 | |
dc.relation | Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307-327. https://doi.org/10.1007/s12571-011-0140-5 | |
dc.relation | Skoufogianni, E., Solomou, A. D., Charvalas, G., & Danalatos, N. (2020). Maize as Energy Crop. En Maize as Energy Crop. IntechOpen. https://doi.org/10.5772/intechopen.88969 | |
dc.relation | Sobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X., Liu, S., Köppl, C. J., Johnson, M. H., Gulyas, L., & García, M. C. (2020). Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sensing, 12(19), 3182. https://doi.org/10.3390/rs12193182 | |
dc.relation | Sommer, S. G., Han, E., Li, X., Rosenqvist, E., & Liu, F. (2023). The Chlorophyll Fluorescence Parameter Fv/Fm Correlates with Loss of Grain Yield after Severe Drought in Three Wheat Genotypes Grown at Two CO2 Concentrations. Plants, 12(3), 436. https://doi.org/10.3390/plants12030436 | |
dc.relation | Strable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology. CSH Protocols, 2009(10), pdb.emo132. https://doi.org/10.1101/pdb.emo132 | |
dc.relation | Tabassum, B., Khan, A. U., Tariq, M., Ramzan, M., Khan, M. S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030 | |
dc.relation | Tesfaye, K., Zaidi, P. H., Gbegbelegbe, S., Boeber, C., Rahut, D. B., Getaneh, F., Seetharam, K., Erenstein, O., & Stirling, C. M. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130(3-4), 959-970. https://doi.org/10.1007/s00704-016-1931-6 | |
dc.relation | Wheeler, T., & Von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402 | |
dc.relation | Wu, J., Zhang, J., Ge, Z., Liwei, X., Shuqing, H., Shen, C., & Kong, F. (2021). Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 20(1), 289-299. https://doi.org/10.1016/s2095-3119(20)63244-0 | |
dc.relation | Yadav, O. P., Hossain, F., Karjagi, C. G., Kumar, B. V. K. V., Zaidi, P. H., Jat, S. L., Chawla, J. S., Kaul, J., Hooda, K. S., Kumar, P. S., Yadava, P. C., & Dhillon, B. S. (2015). Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural research. https://doi.org/10.1007/s40003-015-0180-8 | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Cambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB) | |
dc.type | Trabajo de grado - Pregrado | |