dc.contributorLasso de Paulis, Eloisa
dc.contributorBernal Giraldo, Adriana Jimena
dc.contributorECOFIV
dc.contributorLIMMA
dc.creatorRacedo Pulido, Camilo
dc.date.accessioned2023-08-04T16:43:41Z
dc.date.accessioned2023-09-07T01:07:39Z
dc.date.available2023-08-04T16:43:41Z
dc.date.available2023-09-07T01:07:39Z
dc.date.created2023-08-04T16:43:41Z
dc.date.issued2023-08-03
dc.identifierhttp://hdl.handle.net/1992/69224
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728116
dc.description.abstractEl cambio climático es uno de los retos actuales más importantes debido a los potenciales efectos adversos en la disponibilidad de agua y el crecimiento de cultivos y, por ende, en nuestra seguridad alimentaria. El cultivo de maíz es el tercer cultivo más importante a nivel global y se ve gravemente afectado por períodos de sequía que reducen su productividad. Para asegurar nuestro futuro alimenticio debemos explorar estrategias de cultivo que aseguren mantener la productividad aún en escenarios de sequía. En este trabajo evaluamos la capacidad de la variedad del maíz 'porva' de crecer bajo sequía al ser inoculado con una bacteria promotora de crecimiento vegetal (PGPB), de forma que se pueda determinar su comportamiento ante el estrés hídrico y si la presencia de esta bacteria logra aliviar el estrés hídrico. Se tomaron medidas fisiológicas como fluorescencia (Fv/Fm), conductancia estomática (gs) y potencial hídrico, así como mediciones de área foliar y peso seco tanto de la parte aérea como de raíz. En respuesta al tratamiento de sequía las plantas disminuyeron la eficiencia del fotosistema PSII detectado por medio de fluorescencia, disminuyeron su conductancia estomática y tuvieron valores más negativos de potencial hídrico. Sin embargo, no se detectó ningún efecto asociado a la PGPB indicando que la bacteria no alivió el estrés hídrico. Se observó que las medidas de área foliar y peso seco no fueron significativamente diferentes entre los tratamientos, indicando que 21 días de sequía no afectan el crecimiento de esta variedad de maíz. Nuestros resultados sugieren que la variedad de maíz 'porva' sería una buena variedad para ser utilizado en climas áridos o en condiciones de cambio climático. Sin embargo, es necesario realizar más ensayos para poder comprobar la efectividad de esta variedad hasta la producción del grano.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherBiología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAhmed, I., Ullah, A., Rahman, M. M., Ahmad, B., Wajid, S., Ahmad, A., & Ahmed, S. (2019). Climate Change Impacts and Adaptation Strategies for Agronomic Crops. En IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.82697
dc.relationAslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement. Springer.
dc.relationBabalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
dc.relationBadr, A. N., & Brüggemann, W. (2020). Special issue in honour of Prof. Reto J. Strasser - Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica, 58, 638-645. https://doi.org/10.32615/ps.2020.014
dc.relationBasu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
dc.relationBevivino, A. (1998). Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225-237. https://doi.org/10.1016/s0168-6496(98)00069-5
dc.relationBhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 127(3), 353-359. https://doi.org/10.1111/j.1399-3054.2006.00718.x
dc.relationBoyes, D., Zayed, A., Ascenzi, R., McCaskill, A. J., Hoffman, N. R., Davis, K. L., & Görlach, J. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis. The Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/tpc.010011
dc.relationBreedt, G., Labuschagne, N., & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, 171(2), 229-236. https://doi.org/10.1111/aab.12366
dc.relationCalvo, P., Nelson, L. M., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8
dc.relationChen, D., Wang, S., Beibei, C., Cao, D., Leng, G., Li, H., Yin, L., Shan, L., & Deng, X. (2016). Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01241
dc.relationChitara, M. K., Chauhan, S., & Singh, R. (2021). Bioremediation of Polluted Soil by Using Plant Growth-Promoting Rhizobacteria. Microorganisms for sustainability, 203-226. https://doi.org/10.1007/978-981-15-7447-4_8
dc.relationCIMMYT & CIAT. (2019). Maize for Colombia 2030 vision. https://repository.cimmyt.org/handle/10883/20382
dc.relationDane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4: Physical Methods: 20. Acsess.
dc.relationDasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. K., & Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. Elsevier eBooks, 1-26. https://doi.org/10.1016/b978-0-12-822098-6.00001-x
dc.relationDavoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., & Musat, N. (2020). High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLOS ONE, 15(11), e0242247. https://doi.org/10.1371/journal.pone.0242247
dc.relationDe Araujo, V. A., De Andrade Lira, M., De Souza Júnior, V. S., De Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., De Araujo Pereira, A. P., Júnior, J. O. C. A., Barros, F. M. D. R., & Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564
dc.relationDe Redactores Legis, E. (2022). Importaciones de maíz en Colombia. Legis blog. https://blog.legis.com.co/comercio-exterior/importaciones-de-maiz-en-colombia
dc.relationDesbrosses, G., Contesto, C., Varoquaux, F., Galland, M., & Touraine, B. (2009). PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signaling & Behavior, 4(4), 319-321. https://doi.org/10.4161/psb.4.4.8106
dc.relationDjaman, K., Allen, S. M., Djaman, D. F., Koudahe, K., Irmak, S., Puppala, N., Darapuneni, M. K., & Angadi, S. V. (2021). Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417
dc.relationEdreira, J. I. R., Çarpici, E. B., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. https://doi.org/10.1016/j.fcr.2011.04.015
dc.relationEfeoglu, B., Ekmekçi, Y., & Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75(1), 34-42. https://doi.org/10.1016/j.sajb.2008.06.005
dc.relationEPA (2023). Causes of Climate Change | US EPA. (2023, April 24). US EPA. https://www.epa.gov/climatechange-science/causes-climate-change
dc.relationGao, J., Yang, M., Wei, Y., Huang, Y., Zhang, H., He, W., Sheng, H., & An, L. (2019). Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnology & Biotechnological Equipment. https://doi.org/10.1080/13102818.2019.1629841
dc.relationGezahegn, A. M. (2021). Role of Integrated Nutrient Management for Sustainable Maize Production. International Journal of Agronomy, 2021, 1-7. https://doi.org/10.1155/2021/9982884
dc.relationGleason, S. M., Cooper, M. A., Wiggans, D. R., Bliss, C. A., Romay, M. C., Gore, M. A., Mickelbart, M. V., Topp, C. N., Zhang, H., Hansen, N. C., & Comas, L. H. (2019). Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 234, 119-128. https://doi.org/10.1016/j.fcr.2019.02.001
dc.relationGlick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01506
dc.relationHatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D. R., Thomson, A. M., & Wolfe, D. A. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351-370. https://doi.org/10.2134/agronj2010.0303
dc.relationImadi, S. R., Gul, A., Dikilitas, M., Karakas, S., Sharma, I., & Ahmad, P. (2016). Water stress. John Wiley & Sons, Ltd eBooks, 343-355. https://doi.org/10.1002/9781119054450.ch21
dc.relationIPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report.A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, (in press).
dc.relationJägerbrand, A. K., & Kudo, G. (2016). Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan. Plants, 5(2), 22. https://doi.org/10.3390/plants5020022
dc.relationJeanguenin, L., Mir, A. P., & Chaumont, F. (2017). Uptake, Loss and Control. En Elsevier eBooks (pp. 135-140). https://doi.org/10.1016/b978-0-12-394807-6.00087-3
dc.relationKang, Y., Khan, S. & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security - A review. Progress in Natural Science, 19(12), 1665-1674. https://doi.org/10.1016/j.pnsc.2009.08.001
dc.relationKar, M. M., & Raichaudhuri, A. (2021). Overview of Arabidopsis as a Genetics Model System and Its Limitation, Leading to the Development of Emerging Plant Model Systems. IntechOpen eBooks. https://doi.org/10.5772/intechopen.99818
dc.relationMaazou, A. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (<i>Zea mays</i> L.). American Journal of Plant Sciences, 07(14), 1858-1870. https://doi.org/10.4236/ajps.2016.714172
dc.relationMartínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846
dc.relationMin, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., Liu, X., Hao, D., Chen, H., & Xie, Q. (2016). Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01080
dc.relationMurashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
dc.relationNaseem, H., Ahsan, M., Shahid, M., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009-1022. https://doi.org/10.1002/jobm.201800309
dc.relationNavarro Cerrillo, Rafael & Ariza, David & Maldonado Rodriguez, Ronald. (2004). Chlorophyll Fluorescence Response in Five Provenances of Pinus Pinus halepensis Mill. to Drought Stress. Cuadernos de la Sociedad Española de Ciencias Forestales. 17. 69-74.
dc.relationNotununu, I., Moleleki, L. N., Roopnarain, A., & Adeleke, R. (2022). Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 32(1), 90-106. https://doi.org/10.1016/s1002-0160(21)60051-6
dc.relationO'Callaghan, K. J., Dixon, R. A., & Cocking, E. C. (2001). Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Functional Plant Biology, 28(9), 975. https://doi.org/10.1071/pp01048
dc.relationPereira, S. A., Abreu, D., Ditroilo, M., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106
dc.relationPrasad, M., Srinivasan, R., Chaudhary, M. K., Choudhary, M., & Jat, L. K. (2019). Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. Elsevier eBooks, 129-157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0
dc.relationRen, X., Sun, D., & Wang, Q. (2016). Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40-48. https://doi.org/10.1016/j.agwat.2016.03.014
dc.relationRiaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. Springer eBooks, 181-196. https://doi.org/10.1007/978-3-030-48771-3_11
dc.relationRStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
dc.relationRyu, C., Hu, C., Locy, R. D., & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285-292. https://doi.org/10.1007/s11104-004-0301-9
dc.relationSantos, R. A. D., Díaz, P., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in sustainable food systems, 4. https://doi.org/10.3389/fsufs.2020.00136
dc.relationSchneider, C.A., Rasband, W.S., Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012
dc.relationShah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M. A., Zajonc, J., & Smith, D. L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in sustainable food systems, 5. https://doi.org/10.3389/fsufs.2021.667546
dc.relationShiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307-327. https://doi.org/10.1007/s12571-011-0140-5
dc.relationSkoufogianni, E., Solomou, A. D., Charvalas, G., & Danalatos, N. (2020). Maize as Energy Crop. En Maize as Energy Crop. IntechOpen. https://doi.org/10.5772/intechopen.88969
dc.relationSobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X., Liu, S., Köppl, C. J., Johnson, M. H., Gulyas, L., & García, M. C. (2020). Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sensing, 12(19), 3182. https://doi.org/10.3390/rs12193182
dc.relationSommer, S. G., Han, E., Li, X., Rosenqvist, E., & Liu, F. (2023). The Chlorophyll Fluorescence Parameter Fv/Fm Correlates with Loss of Grain Yield after Severe Drought in Three Wheat Genotypes Grown at Two CO2 Concentrations. Plants, 12(3), 436. https://doi.org/10.3390/plants12030436
dc.relationStrable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology. CSH Protocols, 2009(10), pdb.emo132. https://doi.org/10.1101/pdb.emo132
dc.relationTabassum, B., Khan, A. U., Tariq, M., Ramzan, M., Khan, M. S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030
dc.relationTesfaye, K., Zaidi, P. H., Gbegbelegbe, S., Boeber, C., Rahut, D. B., Getaneh, F., Seetharam, K., Erenstein, O., & Stirling, C. M. (2017). Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130(3-4), 959-970. https://doi.org/10.1007/s00704-016-1931-6
dc.relationWheeler, T., & Von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402
dc.relationWu, J., Zhang, J., Ge, Z., Liwei, X., Shuqing, H., Shen, C., & Kong, F. (2021). Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 20(1), 289-299. https://doi.org/10.1016/s2095-3119(20)63244-0
dc.relationYadav, O. P., Hossain, F., Karjagi, C. G., Kumar, B. V. K. V., Zaidi, P. H., Jat, S. L., Chawla, J. S., Kaul, J., Hooda, K. S., Kumar, P. S., Yadava, P. C., & Dhillon, B. S. (2015). Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural research. https://doi.org/10.1007/s40003-015-0180-8
dc.rightsAtribución 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleCambio climático y maíz: cambios en las respuestas fisiológicas al estrés hídrico de Zea mays en presencia de bacterias promotoras de crecimiento (PGPB)
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución