dc.contributorJunca Peláez, Mauricio José
dc.contributorAvella Medina, Marco
dc.contributorDíaz Díaz, Mateo
dc.contributorQuiroz Salazar, Adolfo José
dc.creatorFonseca Valero, Diego Fernando
dc.date.accessioned2023-08-04T22:18:50Z
dc.date.accessioned2023-09-07T01:05:31Z
dc.date.available2023-08-04T22:18:50Z
dc.date.available2023-09-07T01:05:31Z
dc.date.created2023-08-04T22:18:50Z
dc.date.issued2023-04-14
dc.identifierhttp://hdl.handle.net/1992/69263
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728094
dc.description.abstractThis Ph.D. thesis explores stochastic optimization from a Distributionally Robust perspective, focusing on two significant themes: the innovative use of decision variable-dependent ambiguity sets in Distributionally Robust optimization (DRO), and the estimation of the mode of a random vector using the DRO perspective. Regarding the first topic, new techniques utilizing p-Wasserstein metrics in stochastic programming are proposed, where ambiguity sets are uniquely decision variable-dependent. These developments, under certain assumptions, can be reduced to finite-dimensional optimization problems, sometimes convex. They are tested within the portfolio optimization context against standard methodologies. The research also extends to stochastic programming with expected value constraints, setting feasibility criteria relative to the Wasserstein radius and constraint parameters, and benchmarking model performance using both simulated and real financial market data. Additionally, in the realm of mode estimation, an innovative strategy is devised for identifying a mode estimator in a random vector sample, even in the absence of known probability distribution or density function. This strategy employs a DRO approach and Wasserstein distance, demonstrating the resulting estimator is consistent.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Matemáticas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Matemáticas
dc.relationZ. Akhtar, A. S. Bedi, and K. Rajawat. ¿Conservative Stochastic Optimization With Expectation Constraints¿. In: IEEE Transactions on Signal Processing 69 (2021), pp. 3190¿3205.
dc.relationY. Aliyari Ghassabeh. ¿A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel¿. In: Journal of Multivariate Analysis 135 (2015), pp. 1¿10.
dc.relationL. Ambrosio, N. Gigli, and G. Savare. ¿Gradient flows in metric spaces and in the space of probability measures.¿ In: Lectures in Mathematics ETH Zurich (2008).
dc.relationJ. Ameijeiras-Alonso, R.M. Crujeiras, and A. Rodríguez-Casal. ¿Mode testing, critical bandwidth, and excess mass¿. In: TEST 28 (2019), pp. 900¿919.
dc.relationI. E. Bardakci, C. Lagoa, and U. V. Shanbhag. ¿Probability Maximization with Random Linear Inequalities: Alternative Formulations and Stochastic Approximation Schemes¿. In: 2018 Annual American Control Conference (ACC). 2018, pp. 1396¿1401.
dc.relationI. E. Bardakci and C. M. Lagoa. ¿Distributionally Robust Portfolio Optimization¿. In: 2019 IEEE 58th Conference on Decision and Control (CDC). 2019, pp. 1526¿1531.
dc.relationI.E. Bardakci et al. ¿Probability maximization via Minkowski functionals: convex representations and tractable resolution¿. In: Mathematical Programming (2022).
dc.relationD. Bertsekas. "Convex Optimization Theory". Athena Scientific, 2009.
dc.relationD. Bertsekas, A. Nedic, and AE. Ozdaglar. "Convex Analysis and Optimization". Athena Scientific, 2003.
dc.relationD. R. Bickel. ¿Robust estimators of the mode and skewness of continuous data¿. In: Computational Statistics & Data Analysis 39.2 (2002), pp. 153¿163.
dc.relationJ. Blanchet, Y. Kang, and K. Murthy. ¿Robust Wasserstein profile inference and applications to Machine Learning ¿. In: Journal of Applied Probability 56.3 (2019), pp. 830¿857.
dc.relationJ. Blanchet, Chen L., and X. Y. Zhou. ¿Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances.¿ In: Management Science 68.9 (2022), pp. 6382¿6410.
dc.relationJ. Blanchet and K. Murthy. ¿Quantifying Distributional Model Risk via Optimal Transport¿. In: Mathematics of Operations Research 44.2 (2019), pp. 565¿600.
dc.relationT. Bodnar, N. Parolya, and W. Schmid. ¿Estimation of the global minimum variance portfolio in high dimensions¿. In: European Journal of Operational Research 266.1 (2018), pp. 371¿390.
dc.relationL. Bottou, F. E. Curtis, and J. Nocedal. ¿Optimization Methods for Large-Scale Machine Learning¿. In: SIAM Review 60.2 (2018), pp. 223¿311.
dc.relationP. Burman and P. Polonik. ¿Multivariate mode hunting: Data analytic tools with measures of significance¿. In: Journal of Multivariate Analysis 100.6 (2009), pp. 1198¿1218.
dc.relationG.C. Calafiore and L. El Ghaoui. ¿On Distributionally Robust chance constrained linear programs¿. In: Journal of Optimization Theory and Applications 130.1 (2006), pp. 1¿22.
dc.relationA. Casa, J. Chacón, and Giovanna. Menardi. ¿Modal clustering asymptotics with applications to bandwidth selection¿. In: Electronic Journal of Statistics 14.1 (2020), pp. 835¿856.
dc.relationA. Charnes and W.W. Cooper. ¿Chance-constrained programming¿. In: Management Science 6.1 (1959), pp. 73¿79.
dc.relationA. Charnes, W.W. Cooper, and G.H. Symonds. ¿Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil¿. In: Management Science 4.3 (1958), pp. 235¿263.
dc.relationF. Chen and A. Federgruen. ¿Mean-Variance Analysis of Basic Inventory Models¿.In: Technical manuscript, Columbia University (2000).
dc.relationH. Chen and P. Meer. ¿Robust Computer Vision through Kernel Density¿. In: Proceedings of the European Conference on Computer Vision (2002), pp. 236-250.
dc.relationYC. Chen. ¿Modal regression using kernel density estimation: A review¿. In: WIREs Computational Statistics 10.4 (2018), e1431.
dc.relationZ. Chen, D. Kuhn, and W. Wiesemann. ¿Data-Driven Chance Constrained Programs over Wasserstein Balls¿. In: Operations Research 0.0 (2022).
dc.relationY. Cheng. ¿Mean shift, mode seeking, and clustering¿. In: IEEE transactions onpattern analysis and machine intelligence 17.8 (1995), pp. 790¿799.
dc.relationM-S. Cheon, S. Ahmed, and F. Al-Khayyal. ¿A branch-reduce cut algorithm for the global optimization of probabilistically constrained linear programs¿. In: Math. Programming 108.2-3 (2006), pp. 617¿634.
dc.relationH. Chernoff. ¿ Estimation of the mode¿. In: Annals of the Institute of Statistical Mathematics 16.3 (1964), pp. 31¿41.
dc.relationT.-M. Choi, D. Li, and H. Yan. ¿Mean¿variance analysis for the newsvendor problem¿. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 38.5 (2008), pp. 1169¿1180.
dc.relationV.K. Chopra and Ziemba W.T. ¿The effect of errors in means, variances, and covariances on optimal portfolio choice¿. In: Journal of Portfolio Management 19.2 (1993), pp. 6¿11.
dc.relationM. Chowdhury, M. Chen, and S. Mandal. ¿A class of optimization problems on minimizing variance-based criteria in respect of parameter estimators of a linear model¿. In: Communications in Statistics - Simulation and Computation 49.10 (2020), pp. 2719¿2731.
dc.relationS. Dasgupta and S. Kpotufe. ¿Optimal Rates for K-NN Density and Mode Estimation¿. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Vol. 2. NIPS¿14. Montreal, Canada: MIT Press, 2014, pp. 2555¿2563.
dc.relationD. De Wolf and Y. Smeers. ¿Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients¿. In: European Journal of Operational Research 291.2 (2021), pp. 491¿496.
dc.relationE. Delage and Y. Ye. ¿Distributionally robust optimization under moment uncertainty with application to data-driven problems¿. In: Operations Research 58.3 (2010), pp. 595¿612.
dc.relationV. DeMiguel, A. Martin-Utrera, and F. J. Nogales. ¿Size matters: Optimal calibration of shrinkage estimators for portfolio selection¿. In: Journal of Banking & Finance 37.8 (2013), pp. 3018¿3034.
dc.relationD. Dentcheva, A. Prékopa, and A. Ruszczynski. ¿Concavity and efficient points of discrete distributions in probabilistic programming¿. In: Math. Programming 89.1 (2000), pp. 55¿77.
dc.relationD. Dentcheva and A. Ruszczy¿sk. ¿Optimization with stochastic dominance constraints¿. In: SIAM J. Opti 14.2 (2003), pp. 548¿566.
dc.relationB. Efron and R.J. Tibshirani. "An Introduction to the Bootstrap". Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.
dc.relationL. El Ghaoui, M. Oks, and F. Oustry. ¿On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems¿. In: Operations Research 51.4 (2003), pp. 543¿556.
dc.relationL. El Ghaoui, M. Oks, and F. A. Oustry. ¿Worst-case value-at-risk and robust portfolio optimization: a conic programming approach¿. In: Operations Research 51.4 (2003), pp. 543¿553.
dc.relationPM. Esfahani and D. Kuhn. ¿Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations¿. In: Mathematical Programming 171 (2018), pp. 115¿166.
dc.relationM. Fink et al. ¿Constraint Violation Probability Minimization for Norm-Constrained Linear Model Predictive Control¿. In: 2022 European Control Conference (ECC). 2022, pp. 839¿846.
dc.relationG. Frahm and C. Memmel. ¿Dominating estimators for minimum-variance portfolios¿. In: Journal of Econometrics 159.2 (2010), pp. 289¿302.
dc.relationK. Fukunaga and L. Hostetler. ¿The estimation of the gradient of a density function, with applications in pattern recognition¿. In: IEEE Transactions on Information Theory 21.1 (1975), pp. 32¿40.
dc.relationR. Gao. ¿Wasserstein Regularization for 0-1 Loss¿. In: Optimization Online (2022).
dc.relationR. Gao, X. Chen, and A. J. Kleywegt. ¿Wasserstein Distributionally Robust Optimization and Variation Regularization.¿ In: Operations Research 0.0 (2022).
dc.relationR. Gao and AJ. Kleywegt. ¿Distributionally Robust Stochastic Optimization with Wasserstein Distance.¿ In: Mathematics of Operations Research 0.0 (2022).
dc.relationC. Genovese et al. ¿Non-parametric inference for density modes¿. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 78.1 (2016), pp. 99¿126.
dc.relationG.A. Hanasusanto et al. ¿Ambiguous joint chance constraints under mean and dispersion information¿. In: Operations Research 65.3 (2017), pp. 751¿767.
dc.relationC. Ho, C. Damien, and S. Walker. ¿Bayesian mode regression using mixtures of triangular densities¿. In: Journal of Econometrics 197.2 (2017), pp. 273¿283.
dc.relationA.R. Hota, A. Cherukuri, and J. Lygeros. ¿Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets¿. In: 2019 American Control Conference (ACC) (2019), pp. 1501¿1506.
dc.relationCY. Hsu and TJ. Wu. ¿Efficient estimation of the mode of continuous multivariate data¿. In: Computational Statistics & Data Analysis 63 (2013), pp. 148¿159.
dc.relationH. Jiang and S. Kpotufe. ¿Modal-set estimation with an application to clustering.¿ In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 54 (2017), pp. 1197¿1206.
dc.relationR. Jiang and Y. Guan. ¿Data-driven chance constrained stochastic program¿. In: Mathematical Programming 158 (2016), pp. 291¿327.
dc.relationC. Kamanchi et al. ¿An Online Sample-Based Method for Mode Estimation Using ODE Analysis of Stochastic Approximation Algorithms¿. In: IEEE Control Systems Letters 3.3 (2019), pp. 697¿702.
dc.relationZ. Kang et al. ¿Data-driven robust mean-CVaR portfolio selection under distribution ambiguity¿. In: Quantitative Finance 19.1 (2019), pp. 105¿121.
dc.relationG.C. Kemp and J. Santos-Silva. ¿Regression towards the mode¿. In: Journal of Econometrics 170.1 (2012), pp. 92¿101.
dc.relationT. Kirschstein et al. ¿Minimum volume peeling: A robust nonparametric estimator of the multivariate mode¿. In: Computational Statistics & Data Analysis 93 (2016), pp. 456¿468.
dc.relationS. Kolouri et al. ¿Transport-based analysis, modeling, and learning from signal and data distributions.¿ In: arXiv:1609.04767v1 (2016).
dc.relationC. M. Lagoa and R. B. Barmish. ¿Distributionally robust Monte Carlo simulation¿. In: In Proceedings of the International Federation of Automatic Control World Congress (2002), pp. 1¿12.
dc.relationG. Lan. "First-order and Stochastic Optimization Methods for Machine Learning". Springer Series in the Data Sciences, 2020.
dc.relationG. Lan and Z. Zhou. ¿Algorithms for stochastic optimization with function or expectation constraints¿. In: Comput Optim Appl 76 (2020), pp. 461¿498.
dc.relationO. Ledoit and M. Wolf. ¿A well-conditioned estimator for large-dimensional covariance matrices¿. In: Journal of Multivariate Analysis 88.2 (2004), pp. 365¿411.
dc.relationJ.C.H. Lee et al. ¿Finding the Mode of a Kernel Density Estimate¿. In: arXiv1912.07673 (2019).
dc.relationXi. Li, Q. Xu, and C. Chen. ¿Designing a hierarchical decentralized system for distributing large-scale, cross-sector, and multipollutant control accountabilities¿. In: IEEE Systems Journal 11.4 (2017), pp. 2774¿2783.
dc.relationS. Lotf, M. Salahi, and F. Mehrdoust. ¿Adjusted robust mean-value-at-risk model: less conservative robust portfolios¿. In: Optim Eng 18.2 (2017), pp. 467¿497.
dc.relationS. Lotf and S. Zenios. ¿Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances¿. In: European Journal of Operational Research 269.2 (2018), pp. 556¿576.
dc.relationF. Luo and S. Mehrotra. ¿Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models¿. In: European Journal of Operational Research 278.1 (2019), pp. 20¿35.
dc.relationF. Luo and S. Mehrotra. ¿Distributionally robust optimization with decision dependent ambiguity sets¿. In: Optimization Letters 14.8 (2020), pp. 2565¿2594.
dc.relationU. von Luxburg. ¿A tutorial on spectral clustering¿. In: Statistics and Computing 17.4 (2007), pp. 395¿416.
dc.relationH. Markowitz. ¿Portfolio selection¿. In: Journal of Finance 7.1 (1952), pp. 77¿91.
dc.relationG. Menardi. ¿A Review on Modal Clustering¿. In: International Statistical Review 84.3 (2016), pp. 413¿433.
dc.relationB. L. Miller and H. M. Wagner. ¿Chance-constrained programming with joint constraints¿. In: Operations Research 13.6 (1965), pp. 930¿945.
dc.relationY. Mu et al. ¿Stochastic gradient made stable: A manifold propagation approach for large-scale optimization¿. In: IEEE Transactions on Knowledge and Data Engineering 29.2 (2017), pp. 458¿471.
dc.relationK. Natarajan, M. Sim, and J. Uichanco. ¿Tractable robust expected utility and risk models for portfolio optimization¿. In: Math Finance 18.2 (2010), pp. 695¿731.
dc.relationA. Nemirovski et al. ¿Robust stochastic approximation approach to stochastic programming¿. In: SIAM Journal on Optimization 19.4 (2008), pp. 1574¿1609.
dc.relationM. Norton, A. Mafusalov, and S. Uryasev. ¿Soft Margin Support Vector Classification as Buffered Probability Minimization¿. In: Journal of Machine Learning Research 18.68 (2017), pp. 1¿43.
dc.relationM. Norton and S. Uryasev. ¿Maximization of AUC and Buffered AUC in binary classification¿. In: Mathematical Programming 174 (2019), pp. 575¿612.
dc.relationN. Noyan, G. Rudolf, and M. Lejeune. ¿Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics¿. In: INFORMS Journal on Computing (Dec. 2021).
dc.relationF. Otto. ¿The geometry of dissipative evolution equations: the porous medium equation.¿ In: Communications in Partial Differential Equations 26.1-2 (2001), pp. 101¿174.
dc.relationE. Parzen. ¿On Estimation of a Probability Density Function and Mode¿. In: The Annals of Mathematical Statistics 33.3 (1962), pp. 1065¿1076.
dc.relationB. T. Polyak and A. B. Juditsky. ¿Acceleration of Stochastic Approximation by Averaging¿. In: SIAM Journal on Control and Optimization 30.4 (1992), pp. 838¿855.
dc.relationI. Popescu. ¿Robust mean-covariance solutions for stochastic optimization¿. In: Operations Research 55.1 (2007), pp. 98¿112.
dc.relationF. Qiu et al. ¿Covering linear programming with violations¿. In: INFORMS Journal on Computing 26.3 (2014), pp. 531¿546.
dc.relationP. Rigollet and X. Tong. ¿Neyman-Pearson classification, convexity, and stochastic constraints¿. In: Journal of machine learning research 12.3 (2011), pp. 2831¿2855.
dc.relationR.T. Rockafellar and S. Uryasev. ¿Optimization of conditional value-at-risk¿. In: J. Risk 2 (2000), pp. 21¿42.
dc.relationJ. Rubio-Herrero, M. Baykal-Gürsoy, and A. Ja¿kiewicz. ¿A price-setting newsvendor problem under mean-variance criteria¿. In: European Journal of Operational Research 247.2 (2015), pp. 575¿587.
dc.relationA. Ruszczynski and A. Shapiro. "Stochastic programming (handbooks in operations research and management science)". Springer. 2003.
dc.relationT.W. Sager. ¿Estimation of a Multivariate Mode¿. In: The Annals of Statistics 6.4 (1978), pp. 802¿812.
dc.relationH. Scarf, K. Arrow, and S. Karlin. ¿A min-max solution of an inventory problem¿. In: Studies in the Mathematical Theory of Inventory and Production 10 (1958), pp. 201¿209.
dc.relationS. Shafieezadeh-Abadeh, D. Kuhn, and PM. Esfahani. ¿Regularization via mass transportation¿. In: Journal of Machine Learning Research 20.103 (2019), pp. 1¿68.
dc.relationD. Shahar. ¿Minimizing the Variance of a Weighted Average¿. In: Open Journal of Statistics 7.2 (2017), pp. 216¿224.
dc.relationA. Shapiro. ¿Monte Carlo Sampling Methods¿. In: Stochastic Programming. Vol. 10. Handbooks in Operations Research and Management Science. Elsevier, 2003, pp. 353¿425.
dc.relationA. Shapiro. ¿On duality theory of conic linear problems¿. In: In: Goberna M.Á., López M.A. (eds) Semi-Infinite Programming. Nonconvex Optimization and Its Applications (2001), pp. 135¿365.
dc.relationA. Shapiro. ¿Worst-case distribution analysis of stochastic programs¿. In: Mathematical Programming 107.1 (2006), pp. 91¿96.
dc.relationA. Shapiro and D. Dentcheva. ¿Lectures on Stochastic programming: modeling and theory¿. In: SIAM (2016).
dc.relationA. Shapiro and T. Homem-de-Mello. ¿On the rate of convergence of optimal solutions of Monte Carlo approximations of stochastic programs ¿. In: SIAM Journal on Optimization 11.1 (2000), pp. 70¿86.
dc.relationA. Shapiro and A. Kleywegt. ¿Minimax analysis of stochastic problems¿. In: Optimizations Methods and Software 17.3 (2002), pp. 523¿542.
dc.relationB. Silverman. ¿Using Kernel Density Estimates to Investigate Multimodality¿. In: Journal of the Royal Statistical Society 43.1 (1981), pp. 97¿99.
dc.relationB. W. Silverman. ¿Density Estimation for Statistics and Data Analysis¿. In: Chapman & Hall. (1986).
dc.relationM. T. Subbotin. ¿On the law of frequency of error¿. In: Matematicheskii Sbornik 31 (1923), pp. 296¿301.
dc.relationH. Sun and H. Xu. ¿Convergence analysis for distributionally robust optimization and equilibrium problems¿. In: Mathematics of Operations Research 41.2 (2015), pp. 377¿401.
dc.relationM. Taksar. ¿Ruin Probability Minimization and Dividend Distribution Optimization in Diffusion Models¿. In: Proceedings of the 45th IEEE Conference on Decision and Control. 2006, pp. 2878¿2882.
dc.relationA. Vedaldi and S. Stefano. ¿Quick Shift and Kernel Methods for Mode Seeking¿. In: European Conference on Computer Vision (2008), pp. 705¿718.
dc.relationC. Villani. "Optimal transport: old and new". Vol. 338. Springer Science & Business Media, 2003.
dc.relationC. Villani. "Topics in optimal transportation". American Mathematical Soc, 2003.
dc.relationW. Wang and S. Ahmed. ¿Sample average approximation of expected value constrained stochastic programs¿. In: Operations Research Letters 36.5 (2008), pp. 515¿519.
dc.relationZ.Wang, PW. Glynn, and Y. Ye. ¿Likelihood robust optimization for data-driven problems¿. In: Computational Management Science 13 (2016), pp. 241¿261.
dc.relationZ. Wanh and D.W. Scott. ¿Nonparametric density estimation for high dimensional data¿Algorithms and applications¿. In: Wiley Interdisciplinary Reviews: Computational Statistics 11.4 (2019).
dc.relationJ. Won and S. Kim. ¿Robust trade-off portfolio selection¿. In: Optim Eng 21 (2020), pp. 867¿904.
dc.relationX. Xiao. ¿Penalized stochastic gradient methods for stochastic convex optimization with expectation constraints¿. In: Optimization-online (2019).
dc.relationW. Xie. ¿On distributionally robust chance constrained programs with Wasserstein distance¿. In: Mathematical Programming 186 (2021), pp. 115¿155.
dc.relationW. Xie and S. Ahmed. ¿Bicriteria Approximation of Chance Constrained Covering Problems¿. In: Operations Research 68 (2020), pp. 516¿533.
dc.relationW. Xie and S. Ahmed. ¿On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems¿. In: SIAM Journal on Optimization 28.2 (2018), pp. 1151¿1182.
dc.relationJ. Zhang et al. ¿Supply Chains Involving a Mean-Variance-Skewness-Kurtosis Newsvendor: Analysis and Coordination¿. In: Production and Operations Management 29.6 (2020), pp. 1397¿1430.
dc.relationL. Zhang et al. ¿Solving Stochastic Optimization with Expectation Constraints Efficiently by a Stochastic Augmented Lagrangian-Type Algorithm¿. In: INFORMS Journal on Computing 34.6 (2022), pp. 2989¿3006.
dc.relationW. T. Ziemba and R. G. Vickson. Stochastic Optimization Models in Finance. 2006th ed. WORLD SCIENTIFIC, 2006.
dc.relationS. Zymler, D. Kuhn, and B. Rustem. ¿Distributionally robust joint chance constraints with second-order moment information¿. In: Mathematical Programming 137 (2013), pp. 167¿198.
dc.relationS. Zymler, B. Rustem, and D. Kuhn. ¿Robust portfolio optimization with derivative insurance guarantees¿. In: European Journal of Operational Research 210.2 (2011), pp. 410¿424.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDistributionally robust optimization: a novel approach with decision-dependent ambiguity sets and an application to mode estimation
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución