Colombia
| Trabajo de grado - Pregrado
Emulating the Wigner function of an odd cat state by means of classical light fields
dc.contributor | Valencia González, Alejandra Catalina | |
dc.contributor | Quiroga Puello, Luis | |
dc.contributor | Óptica Cuántica | |
dc.creator | Piñeros Lourenco, Pedro Enrique | |
dc.date.accessioned | 2023-06-27T19:56:41Z | |
dc.date.accessioned | 2023-09-07T00:59:28Z | |
dc.date.available | 2023-06-27T19:56:41Z | |
dc.date.available | 2023-09-07T00:59:28Z | |
dc.date.created | 2023-06-27T19:56:41Z | |
dc.date.issued | 2023-06-27 | |
dc.identifier | http://hdl.handle.net/1992/67936 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728044 | |
dc.description.abstract | The Wigner distribution function is a very useful tool in signal analysis because it provides a representation of a signal in the conjugate variables across phase space. In the context of quantum mechanics, this function represents a quasi-probability distribution in phase space for a quantum state. On the other hand, in signal processing, the Fourier transform and its generalization, the fractional Fourier transform (FFT), play an important role in time and frequency analysis. Moreover, research conducted in the late 1990s found that reconstruction of the Wigner function could be obtained from the collection of different fractional Fourier transforms. In this project, the Wigner function of a quantum state, called a cat state, was emulated by obtaining the fractional Fourier transforms in the spatial frequency variables of two Gaussian beams separated by "2d" distance. This will respond to the problem of generating lower cost methods that obtain properties of quantum states through their Wigner function, since, to generate, for example, a cat state, much more sophisticated and expensive equipment is needed. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | M. Tse and N. Kijbunchoo. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. 123, (23): 231107, (2019). | |
dc.relation | G. Milburn P. Cochrane and W. Munro. Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping. Phys.Rev. A 59, 2631, (1999) | |
dc.relation | E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749, (1932). | |
dc.relation | A. Martinez. Characterization of quantum states of light by means of homodyne detection and reconstruction of Wigner functions. Monografía de pregrado: Universidad de los Andes. Bogotá, Colombia, (2020). | |
dc.relation | U. Leonhardt. Measuring the quantum state of light. Cambridge University Press, (1997). | |
dc.relation | A. Furusawa. Quantum states of light. Springer, (2015). | |
dc.relation | C. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University Press, (2004). | |
dc.relation | M. Fox. Quantum Optics an introduction. Oxford University Press Inc, (2006). | |
dc.relation | E. Condón. Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. 23, (3): 158-164, (1937). | |
dc.relation | V. Namias. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics 25, (3): 241-265, (1980). | |
dc.relation | H. Ozaktas and M. Kutay. The Fractional Fourier Transform. European Control Conference, (2001). | |
dc.relation | V. Christlein A. Maier S. Steidl and J. Hornegger. Medical Imaging Systems. Springer International Publishing, (2018). | |
dc.relation | G. Arfken and H. Weber. Mathematical Methods for Physicists. Academic Press, 4ta edición, (1995). | |
dc.relation | I. Hoover. Introducing the Fractional Fourier Transform. (2013). | |
dc.relation | D. Mendlovic A. Lohmann and Z. Zalevsky. Fractional transformations in Optics. Elsevier sciencie B.V., (1998). | |
dc.relation | J. Ville. Théorie et Applications de la Notion de Signal Analytique. Cables et Transmission, 2, 61-74, (1948). | |
dc.relation | L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE 77, 941, (1989). | |
dc.relation | M. Scully M. Hilley E. O'Cornell and E. Wigner. Distributions functions in physics: fundamentals. Physics Reports 106, 121-167, (1984). | |
dc.relation | B. Diu C. Cohen-Tannoudji and F. Laloe. Quantum Mechanics. John Wiley Sons, Vol. I, (1977). | |
dc.relation | J. Radon. Über die bestimmung von funktionen durch ihre integralwerte längs gewisser manngfaltigkeiten. (1983). | |
dc.relation | J. Radon and P. Parks. On the determination of functions from their integral values along certain manifols. IEEE transactions on Medical Imaging, 5 (4): 170-176, (1986). | |
dc.relation | V. Velázquez E. Barrios-Barocio and S. Cruz. Design and Construction of Homodyne Detectors for the Study of Quantum Optical States. J. Phys.: Conf. Ser. 1540, 012030, (2020). | |
dc.relation | A. Lohmann and B. Soffer. Relationships between the Radon-Wigner and fractional Fourier transforms. J. Opt. Soc. Am. A 11, pp. 1798-1801, (1994). | |
dc.relation | H. Yuen and V. Chan. Noise in homodyne and heterodyne detection. Opt. Lett. 8, pp. 177179, (1983). | |
dc.relation | K. Banaszek and K. Wódkiewicz. Direct Probing of Quantum Phase Space by Photon Counting. Phys. Rev. Lett. 76, 23, pp. 4344-4347, (1996). | |
dc.relation | N. Sridhar and et al. Direct measurement of the Wigner function by photonnumber-resolving detection. J. Opt. Soc. Am. B 31, 10, (2014). | |
dc.relation | L. Lutterbach and L. Davidovich. Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps. Phys. Rev. Lett. 78, 13, (1997). | |
dc.relation | G. Molina-Terriza N. Gonzalez and J. Torres. Properties of the spatial Wigner function of entangled photon pairs. Phys. Review. A80, 043804, (2009). | |
dc.relation | T. Douce and et al. Direct measurement of the biphoton Wigner function through two-photon interference. Sci. Rep. 3, 3530, (2013). | |
dc.relation | A. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Am. A 10, 10 (1993). | |
dc.relation | J. Goodman. Introduction to Fourier optics. The McGraw-Hill Companies. Second edition, (1996). | |
dc.relation | R. Guenther. Modern Optics. Duke University, (1990). | |
dc.relation | V. Arnold. Mathematical Methods of Classical Mechanics. Springer, second edition, (1989). | |
dc.relation | F. Lin and et al. Geometry for Computer Graphics. Student Notes, ITTI Gravigs Project, (1995). | |
dc.relation | K. Izuka. Elements of photonics. Wiley-Interscience, (2002). | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Emulating the Wigner function of an odd cat state by means of classical light fields | |
dc.type | Trabajo de grado - Pregrado |