dc.contributor | Giraldo Trujillo, Luis Felipe | |
dc.contributor | Navarrete Mejía, Miguel Gonzalo | |
dc.contributor | Valderrama Manrique, Mario Andrés | |
dc.contributor | Señales y neurociencias | |
dc.creator | Betancourt Zapata, William Javier | |
dc.date.accessioned | 2023-07-27T13:37:33Z | |
dc.date.accessioned | 2023-09-07T00:58:01Z | |
dc.date.available | 2023-07-27T13:37:33Z | |
dc.date.available | 2023-09-07T00:58:01Z | |
dc.date.created | 2023-07-27T13:37:33Z | |
dc.date.issued | 2023-07-26 | |
dc.identifier | http://hdl.handle.net/1992/68829 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728026 | |
dc.description.abstract | This article investigates brain synchronization during the musical improvisation. Techniques such as phase locking value (PLV) and envelope correlation were used to analyze the electroencephalography (EEG) signals of 5 pairs of musicians playing together. The study found synchronization in frequency
bands (delta, theta, alpha, beta1, and beta2) during performance and improvisation above random fluctuations. The results suggest that both following a score and improvise, involve synchronization between brains and highlight the potential influence of music on brain activity and interpersonal connections. However, the mechanisms
by which this synchronization occurs are not clear. Therefore, further research is needed to explore more specific experimental approaches. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | A. Burgess. (Dec. 24 2013). On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Frontiers in human neuroscience vol. 7, 881. doi:10.3389/fnhum.2013.00881 | |
dc.relation | M. Menoret, L. Varnet, R. Fargier, et al. (2013). Neural correlates of non-verbal social interactions: a dual-EEG study. Neuropsychologia. 55,85-97. doi:10.1016/j.neuropsychologia.2013.10.001 | |
dc.relation | A. Pérez, M. Carreiras, and J. A. Dunabeitia. (2017). Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening, Scientific Reports, 7, 4190. doi: 10.1038/s41598-017-04464-4 | |
dc.relation | Y. Mu, C. Guo, and S. Han. (2016). Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience, 11,1882-1893. doi: 10.1093/scan/nsw106 | |
dc.relation | S, Koelsch. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180. doi: 10.1038/nrn3666 | |
dc.relation | A. Zamm, S. Debener, A. R. Bauer, M. Bleichner, A. Demostraciones, and C. Palmer. (May. 14, 2018). Amplitude envelope correlations synchronous cortical oscillations in performing musicians. The New York Academy of Sciences, 1423(1). | |
dc.relation | I. Konvalinka, P. Vuust, A. Roepstorff, and C. D. Frith. (2010). Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. The Quarterly Journal of Experimental Psychology, 63(11), 2220-2230. doi: 10.1080/17470218.2010.497843 | |
dc.relation | U. Lindenberger, S. C. Li, W. Gruber, and V. Muller. (2009). Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10(1), 22. doi: 10.1186/1471-2202-10-22 | |
dc.relation | J. Sanger, V. Muller and U. Lindenberger. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience. 6, 312. | |
dc.relation | D. Dolan, J. Sloboda, H. Jensen, B. Cruts, and E. Feygelson. (2013). The improvisatory approach to classical music performance: an empirical investigation into its characteristics and impact. Music Performance Research. Res. 6, 1-38. | |
dc.relation | J. Boasen, Y. Takeshita, S. Kuriki, and K. Yokosawa. (2018). Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Frontiers in Human Neuroscience. 12, 156. doi: 10.3389/fnhum.2018.00156 | |
dc.relation | A. Czeszumski, S. Eustergerling, A. Lang, D. Menrath, M. Gerstenberger, S. Schuberth, F. Schreiber, Z. Z. Rendon, and P. Konig. (2020). Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction, Frontiers in Human Neuroscience, 14, 39. doi: 10.3389/fnhum.2020.00039. | |
dc.relation | M. Sasaki, J. Iversen and D.E. Callan. (2019). Music Improvisation Is Characterized by Increase EEG Spectral Power in Prefrontal and Perceptual Motor Cortical Sources and Can be Reliably Classified From Non-improvisatory Performance. Frontiers in Human Neuroscience. 13, 435. doi: 10.3389/fnhum.2019.00435 | |
dc.relation | A.G. Guggisberg, S. Rizk, R. Ptak, et al. (2015). Two Intrinsic Coupling Types for Resting-State Integration in the Human Brain. Brain Topography, 28(2), 318-329. | |
dc.relation | A. Zamm, C. Palmer, A-KR Bauer, MG. Bleichner, AP. Demos and S. Debener. (2021). Behavioral and Neural Dynamics of Interpersonal Synchrony Between Performing Musicians: A Wireless EEG Hyperscanning Study. Frontiers in Human Neuroscience. 15, 717810. doi: 10.3389/fnhum.2021.717810 | |
dc.relation | Z. Sverko, M. Vrankic, S. Vlahinic, and P. Rogelj. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors (Basel, Switzerland), 22(4), 1477. | |
dc.relation | F. Butar, and J. Park. (2008). Permutation Tests for Comparing Two Populations. Journal of Mathematical Sciences and Mathematics Education, 3(2), 19-30. | |
dc.relation | Y. Benjamini, and Y. Hochberg. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 57(1), 289-300. | |
dc.relation | P. Clochon, J.M. Fontbonne, N. Lebrun, and P. Etévenon. (1996). A new method for quantifying 12. EEG event-related desynchronization: amplitude envelope analysis. Electroencephalography and Clinical Neurophysiology, 98, 126-129. | |
dc.relation | G. Caetano, V. Jousmaki, and R. Hari. (2007). Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions. Proceedings of the National Academy of Sciences. 104(21), 9058-9062. doi:10.1073/pnas.0702453104 | |
dc.relation | F. Varela, JP. Lachaux, E. Rodriguez, et al. (2001). The brainweb: Phase synchronization and large-scale integration.Nature Reviews Neuroscience, 2, 229-239. doi: https://doi.org/10.1038/35067550 | |
dc.relation | J.G. Klinzing, N. Niethard and J. Born. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22, 1598-1610 . doi: https://doi.org/10.1038/s41593-019-0467-3 | |
dc.relation | A. F. de C. Hamilton. (2021). Hyperscanning: Beyond the Hype, Neuron, 109(3), 404-407. doi: 10.1016/j.neuron.2020.11.008. | |
dc.relation | J. Barone and H.E. Rossiter. (2021). Understanding the Role of Sensorimotor Beta Oscillations, Frontiers in Systems Neuroscience, 15, 655886 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Effect of musical improvisation on inter-brain wave synchronization | |
dc.type | Trabajo de grado - Maestría | |