dc.contributorGiraldo Trujillo, Luis Felipe
dc.contributorNavarrete Mejía, Miguel Gonzalo
dc.contributorValderrama Manrique, Mario Andrés
dc.contributorSeñales y neurociencias
dc.creatorBetancourt Zapata, William Javier
dc.date.accessioned2023-07-27T13:37:33Z
dc.date.accessioned2023-09-07T00:58:01Z
dc.date.available2023-07-27T13:37:33Z
dc.date.available2023-09-07T00:58:01Z
dc.date.created2023-07-27T13:37:33Z
dc.date.issued2023-07-26
dc.identifierhttp://hdl.handle.net/1992/68829
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728026
dc.description.abstractThis article investigates brain synchronization during the musical improvisation. Techniques such as phase locking value (PLV) and envelope correlation were used to analyze the electroencephalography (EEG) signals of 5 pairs of musicians playing together. The study found synchronization in frequency bands (delta, theta, alpha, beta1, and beta2) during performance and improvisation above random fluctuations. The results suggest that both following a score and improvise, involve synchronization between brains and highlight the potential influence of music on brain activity and interpersonal connections. However, the mechanisms by which this synchronization occurs are not clear. Therefore, further research is needed to explore more specific experimental approaches.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relationA. Burgess. (Dec. 24 2013). On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Frontiers in human neuroscience vol. 7, 881. doi:10.3389/fnhum.2013.00881
dc.relationM. Menoret, L. Varnet, R. Fargier, et al. (2013). Neural correlates of non-verbal social interactions: a dual-EEG study. Neuropsychologia. 55,85-97. doi:10.1016/j.neuropsychologia.2013.10.001
dc.relationA. Pérez, M. Carreiras, and J. A. Dunabeitia. (2017). Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening, Scientific Reports, 7, 4190. doi: 10.1038/s41598-017-04464-4
dc.relationY. Mu, C. Guo, and S. Han. (2016). Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience, 11,1882-1893. doi: 10.1093/scan/nsw106
dc.relationS, Koelsch. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180. doi: 10.1038/nrn3666
dc.relationA. Zamm, S. Debener, A. R. Bauer, M. Bleichner, A. Demostraciones, and C. Palmer. (May. 14, 2018). Amplitude envelope correlations synchronous cortical oscillations in performing musicians. The New York Academy of Sciences, 1423(1).
dc.relationI. Konvalinka, P. Vuust, A. Roepstorff, and C. D. Frith. (2010). Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. The Quarterly Journal of Experimental Psychology, 63(11), 2220-2230. doi: 10.1080/17470218.2010.497843
dc.relationU. Lindenberger, S. C. Li, W. Gruber, and V. Muller. (2009). Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10(1), 22. doi: 10.1186/1471-2202-10-22
dc.relationJ. Sanger, V. Muller and U. Lindenberger. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience. 6, 312.
dc.relationD. Dolan, J. Sloboda, H. Jensen, B. Cruts, and E. Feygelson. (2013). The improvisatory approach to classical music performance: an empirical investigation into its characteristics and impact. Music Performance Research. Res. 6, 1-38.
dc.relationJ. Boasen, Y. Takeshita, S. Kuriki, and K. Yokosawa. (2018). Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Frontiers in Human Neuroscience. 12, 156. doi: 10.3389/fnhum.2018.00156
dc.relationA. Czeszumski, S. Eustergerling, A. Lang, D. Menrath, M. Gerstenberger, S. Schuberth, F. Schreiber, Z. Z. Rendon, and P. Konig. (2020). Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction, Frontiers in Human Neuroscience, 14, 39. doi: 10.3389/fnhum.2020.00039.
dc.relationM. Sasaki, J. Iversen and D.E. Callan. (2019). Music Improvisation Is Characterized by Increase EEG Spectral Power in Prefrontal and Perceptual Motor Cortical Sources and Can be Reliably Classified From Non-improvisatory Performance. Frontiers in Human Neuroscience. 13, 435. doi: 10.3389/fnhum.2019.00435
dc.relationA.G. Guggisberg, S. Rizk, R. Ptak, et al. (2015). Two Intrinsic Coupling Types for Resting-State Integration in the Human Brain. Brain Topography, 28(2), 318-329.
dc.relationA. Zamm, C. Palmer, A-KR Bauer, MG. Bleichner, AP. Demos and S. Debener. (2021). Behavioral and Neural Dynamics of Interpersonal Synchrony Between Performing Musicians: A Wireless EEG Hyperscanning Study. Frontiers in Human Neuroscience. 15, 717810. doi: 10.3389/fnhum.2021.717810
dc.relationZ. Sverko, M. Vrankic, S. Vlahinic, and P. Rogelj. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors (Basel, Switzerland), 22(4), 1477.
dc.relationF. Butar, and J. Park. (2008). Permutation Tests for Comparing Two Populations. Journal of Mathematical Sciences and Mathematics Education, 3(2), 19-30.
dc.relationY. Benjamini, and Y. Hochberg. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 57(1), 289-300.
dc.relationP. Clochon, J.M. Fontbonne, N. Lebrun, and P. Etévenon. (1996). A new method for quantifying 12. EEG event-related desynchronization: amplitude envelope analysis. Electroencephalography and Clinical Neurophysiology, 98, 126-129.
dc.relationG. Caetano, V. Jousmaki, and R. Hari. (2007). Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions. Proceedings of the National Academy of Sciences. 104(21), 9058-9062. doi:10.1073/pnas.0702453104
dc.relationF. Varela, JP. Lachaux, E. Rodriguez, et al. (2001). The brainweb: Phase synchronization and large-scale integration.Nature Reviews Neuroscience, 2, 229-239. doi: https://doi.org/10.1038/35067550
dc.relationJ.G. Klinzing, N. Niethard and J. Born. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22, 1598-1610 . doi: https://doi.org/10.1038/s41593-019-0467-3
dc.relationA. F. de C. Hamilton. (2021). Hyperscanning: Beyond the Hype, Neuron, 109(3), 404-407. doi: 10.1016/j.neuron.2020.11.008.
dc.relationJ. Barone and H.E. Rossiter. (2021). Understanding the Role of Sensorimotor Beta Oscillations, Frontiers in Systems Neuroscience, 15, 655886
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEffect of musical improvisation on inter-brain wave synchronization
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución