dc.contributorJiménez Díaz, Elizabeth
dc.contributorUribe Ardila, Jesús Alfredo
dc.contributorRomán Ochoa, Yony
dc.contributorGrupo de Investigación en Bioquímica Aplicada
dc.creatorVelásquez Diaz, Sonia Alejandra
dc.date.accessioned2023-08-08T14:12:10Z
dc.date.accessioned2023-09-07T00:57:27Z
dc.date.available2023-08-08T14:12:10Z
dc.date.available2023-09-07T00:57:27Z
dc.date.created2023-08-08T14:12:10Z
dc.date.issued2023-06
dc.identifierhttp://hdl.handle.net/1992/69354
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728017
dc.description.abstractLos cálculos renales son una condición que afectan al 14,8% de la población mundial, causando dolor y heridas en las vías urinarias de quienes los padecen. Estos son depósitos de minerales y sales acidas formados en las vías urinarias que en su mayoría están formadas por: oxalato de calcio monohidratado, ácido úrico, o fosfato de calcio. Los tratamientos conocidos se consideran invasivos, y poseen varios efectos secundarios, por lo que surge la necesidad de evaluar nuevos tratamientos, entre ellos moléculas provenientes de extractos naturales. La Parietaria officinalis es una planta ampliamente estudiada por sus efectos antibacterianos y también es conocida por su efecto diurético siendo utilizada en el tratamiento de infecciones urinarias. Al ser una condición de amplio interés a nivel de salud pública, se propuso y desarrolló un trabajo de tesis, donde se estandarizó la metodología de síntesis y caracterización de cristales de oxalato de calcio monohidratado. Esta caracterización se realizó mediante las técnicas de (DRX) Difracción de Rayos X en polvo, FT-IR, y Raman. Por otra parte, se desarrollaron cinco metodologías de extracción realizadas a la planta Parietaria officinalis, y su caracterización en términos de cuantificación de flavonoides y análisis de carbohidratos. De igual manera se realizaron pruebas de prevención de la formación de cristales de oxalato de calcio en presencia de los cinco extractos, y también pruebas de solubilidad de los cristales de oxalato de calcio con cada extracto. Finalmente, debido a que el 80% de las infecciones urinarias son provocadas por la bacteria gran negativa como E. coli y en menor proporción por bacterias como S. aureus, se realizaron pruebas preliminares de difusión en disco contra estos microorganismos.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationOrlando, M. T. D.; Kuplich, L.; de Souza, D. O.; Belich, H.; Depianti, J. B.; Orlando, C. G. P.; Medeiros, E. F.; da Cruz, P. C. M.; Martinez, L. G.; Corrêa, H. P. S.; Ortiz, R. Study of Calcium Oxalate Monohydrate of Kidney Stones by X-Ray Diffraction. Powder Diffr. 2008, 23 (S1), S59¿S64. https://doi.org/10.1154/1.2903738.
dc.relationKhan, S. R.; Pearle, M. S.; Robertson, W. G.; Gambaro, G.; Canales, B. K.; Doizi, S.; Traxer, O.; Tiselius, H.-G. Kidney Stones. Nat. Rev. Dis. Primer 2016, 2, 16008. https://doi.org/10.1038/nrdp.2016.8.
dc.relationNirumand, M. C.; Hajialyani, M.; Rahimi, R.; Farzaei, M. H.; Zingue, S.; Nabavi, S. M.; Bishayee, A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018, 19 (3), 765. https://doi.org/10.3390/ijms19030765.
dc.relationZhu, W.; Liu, Y.; Lan, Y.; Li, X.; Luo, L.; Duan, X.; Lei, M.; Liu, G.; Yang, Z.; Mai, X.; Sun, Y.; Wang, L.; Lu, S.; Ou, L.; Wu, W.; Mai, Z.; Zhong, D.; Cai, C.; Zhao, Z.; Zhong, W.; Liu, Y.; Sun, Y.; Zeng, G. Dietary Vinegar Prevents Kidney Stone Recurrence via Epigenetic Regulations. EBioMedicine 2019, 45, 231¿250. https://doi.org/10.1016/j.ebiom.2019.06.004.
dc.relationLorenzo, V.; Torres, A.; Salido, E. Hiperoxaluria Primaria. Nefrol. Madr. 2014, 34 (3), 398¿412. https://doi.org/10.3265/Nefrologia.pre2014.Jan.12335.
dc.relationRaheem, O. A.; Mirheydar, H. S.; Palazzi, K.; Chenoweth, M.; Lakin, C.; Sur, R. L. Prevalence of Nephrolithiasis in Human Immunodeficiency Virus Infected Patients on the Highly Active Antiretroviral Therapy. J. Endourol. 2012, 26 (8), 1095¿1098. https://doi.org/10.1089/end.2011.0639.
dc.relationSakhaee, K.; Maalouf, N. M.; Kumar, R.; Pasch, A.; Moe, O. W. Nephrolithiasis-Associated Bone Disease: Pathogenesis and Treatment Options. Kidney Int. 2011, 79 (4), 393¿403. https://doi.org/10.1038/ki.2010.473.
dc.relationGul, Z.; Monga, M. Medical and Dietary Therapy for Kidney Stone Prevention. Korean J. Urol. 2014, 55 (12), 775¿779. https://doi.org/10.4111/kju.2014.55.12.775.
dc.relationFerraro, P. M.; Taylor, E. N.; Eisner, B. H.; Gambaro, G.; Rimm, E. B.; Mukamal, K. J.; Curhan, G. C. History of Kidney Stones and the Risk of Coronary Heart Disease. JAMA 2013, 310 (4), 408¿415. https://doi.org/10.1001/jama.2013.8780.
dc.relationRobertson, W. G.; Peacock, M.; Nordin, B. E. Calcium Oxalate Crystalluria and Urine Saturation in Recurrent Renal Stone-Formers. Clin. Sci. 1971, 40 (5), 365¿374. https://doi.org/10.1042/cs0400365.
dc.relationFinlayson, B.; Reid, F. The Expectation of Free and Fixed Particles in Urinary Stone Disease. Invest. Urol. 1978, 15 (6), 442¿448.
dc.relationKhan, S. R.; Hackett, R. L. Developmental Morphology of Calcium Oxalate Foreign Body Stones in Rats. Calcif. Tissue Int. 1985, 37 (2), 165¿173. https://doi.org/10.1007/BF02554836.
dc.relationKhan, S. R.; Hackett, R. L. Urolithogenesis of Mixed Foreign Body Stones. J. Urol. 1987, 138 (5), 1321¿1328. https://doi.org/10.1016/s0022-5347(17)43592-0.
dc.relationKok, D. J.; Khan, S. R. Calcium Oxalate Nephrolithiasis, a Free or Fixed Particle Disease. Kidney Int. 1994, 46 (3), 847¿854. https://doi.org/10.1038/ki.1994.341.
dc.relationKhan, S. R. Experimental Calcium Oxalate Nephrolithiasis and the Formation of Human Urinary Stones. Scanning Microsc. 1995, 9 (1), 89¿100; discussion 100-101.
dc.relationKhan, S. R.; Rodriguez, D. E.; Gower, L. B.; Monga, M. Association of Randall Plaque with Collagen Fibers and Membrane Vesicles. J. Urol. 2012, 187 (3), 1094¿1100. https://doi.org/10.1016/j.juro.2011.10.125.
dc.relationKhan, S. R.; Canales, B. K. Unified Theory on the Pathogenesis of Randall¿s Plaques and Plugs. Urolithiasis 2015, 43 Suppl 1 (0 1), 109¿123. https://doi.org/10.1007/s00240-014-0705-9.
dc.relationEvan, A. P.; Bledsoe, S.; Worcester, E. M.; Coe, F. L.; Lingeman, J. E.; Bergsland, K. J. Renal Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 Increases in Calcium Oxalate Stone-Forming Patients. Kidney Int. 2007, 72 (12), 1503¿1511. https://doi.org/10.1038/sj.ki.5002569.
dc.relationBorden, T. A.; Lyon, E. S. The Effects of Magnesium and PH on Experimental Calcium Oxalate Stone Disease. Invest. Urol. 1969, 6 (4), 412¿422.
dc.relationMeyer, J. L.; McCall, J. T.; Smith, L. H. Inhibition of Calcium Phosphate Crystallization by Nucleoside Phosphates. Calcif. Tissue Res. 1974, 15 (4), 287¿293. https://doi.org/10.1007/BF02059063.
dc.relationMeyer, J. L.; Smith, L. H. Growth of Calcium Oxalate Crystals. II. Inhibition by Natural Urinary Crystal Growth Inhibitors. Invest. Urol. 1975, 13 (1), 36¿39.
dc.relationMorse, R. M.; Resnick, M. I. A New Approach to the Study of Urinary Macromolecules as a Participant in Calcium Oxalate Crystallization. J. Urol. 1988, 139 (4), 869¿873. https://doi.org/10.1016/s0022-5347(17)42665-6.
dc.relationDawson, C. J.; Grover, P. K.; Ryall, R. L. Inter-Alpha-Inhibitor in Urine and Calcium Oxalate Urinary Crystals. Br. J. Urol. 1998, 81 (1), 20¿26. https://doi.org/10.1046/j.1464-410x.1998.00515.x.
dc.relationSpector, A. R.; Gray, A.; Prien, E. L. Kidney Stone Matrix. Differences in Acidic Protein Composition. Invest. Urol. 1976, 13 (6), 387¿389.
dc.relationLian, J. B.; Prien, E. L.; Glimcher, M. J.; Gallop, P. M. The Presence of Protein-Bound Gamma-Carboxyglutamic Acid in Calcium-Containing Renal Calculi. J. Clin. Invest. 1977, 59 (6), 1151¿1157. https://doi.org/10.1172/JCI108739.
dc.relationJones, W. T.; Resnick, M. I. The Characterization of Soluble Matrix Proteins in Selected Human Renal Calculi Using Two-Dimensional Polyacrylamide Gel Electrophoresis. J. Urol. 1990, 144 (4), 1010¿1014. https://doi.org/10.1016/s0022-5347(17)39648-9.
dc.relationOrdon, M.; Urbach, D.; Mamdani, M.; Saskin, R.; D¿A Honey, R. J.; Pace, K. T. The Surgical Management of Kidney Stone Disease: A Population Based Time Series Analysis. J. Urol. 2014, 192 (5), 1450¿1456. https://doi.org/10.1016/j.juro.2014.05.095.
dc.relationScales, C. D.; Lai, J. C.; Dick, A. W.; Hanley, J. M.; van Meijgaard, J.; Setodji, C. M.; Saigal, C. S.; Urologic Diseases in America Project. Comparative Effectiveness of Shock Wave Lithotripsy and Ureteroscopy for Treating Patients with Kidney Stones. JAMA Surg. 2014, 149 (7), 648¿653. https://doi.org/10.1001/jamasurg.2014.336.
dc.relationKourambas, J.; Delvecchio, F. C.; Munver, R.; Preminger, G. M. Nitinol Stone Retrieval-Assisted Ureteroscopic Management of Lower Pole Renal Calculi. Urology 2000, 56 (6), 935¿939. https://doi.org/10.1016/s0090-4295(00)00821-9.
dc.relationWignall, G. R.; Canales, B. K.; Denstedt, J. D.; Monga, M. Minimally Invasive Approaches to Upper Urinary Tract Urolithiasis. Urol. Clin. North Am. 2008, 35 (3), 441¿454, viii. https://doi.org/10.1016/j.ucl.2008.05.004.
dc.relationXue, W.; Pacik, D.; Boellaard, W.; Breda, A.; Botoca, M.; Rassweiler, J.; Van Cleynenbreugel, B.; de la Rosette, J.; CROES PCNL Study Group. Management of Single Large Nonstaghorn Renal Stones in the CROES PCNL Global Study. J. Urol. 2012, 187 (4), 1293¿1297. https://doi.org/10.1016/j.juro.2011.11.113.
dc.relationParmar, M. S. Kidney Stones. BMJ 2004, 328 (7453), 1420¿1424. https://doi.org/10.1136/bmj.328.7453.1420.
dc.relationZhang, H.; Li, N.; Li, K.; Li, P. Protective Effect of Urtica Dioica Methanol Extract against Experimentally Induced Urinary Calculi in Rats. Mol. Med. Rep. 2014, 10 (6), 3157¿3162. https://doi.org/10.3892/mmr.2014.2610.
dc.relationHyams, E. S.; Matlaga, B. R. Economic Impact of Urinary Stones. Transl. Androl. Urol. 2014, 3 (3), 278¿283. https://doi.org/10.3978/j.issn.2223-4683.2014.07.02.
dc.relationSaigal, C. S.; Joyce, G.; Timilsina, A. R.; Urologic Diseases in America Project. Direct and Indirect Costs of Nephrolithiasis in an Employed Population: Opportunity for Disease Management? Kidney Int. 2005, 68 (4), 1808¿1814. https://doi.org/10.1111/j.1523-1755.2005.00599.x.
dc.relationPearle, M. S.; Calhoun, E. A.; Curhan, G. C.; Urologic Diseases of America Project. Urologic Diseases in America Project: Urolithiasis. J. Urol. 2005, 173 (3), 848¿857. https://doi.org/10.1097/01.ju.0000152082.14384.d7.
dc.relationCecchini, T.; Ticli, B. Las Plantas Medicinales; Editorial de Vecchi: Barcelona, 2008.
dc.relationAmar, A.; Harrache, D.; Atmani, F.; Bassou, G.; Grillon, F. Effet de Parietaria officinalis sur la cristallisation de l¿oxalate de calcium, dans l¿urine. Phytothérapie 2010, 8 (6), 342¿347. https://doi.org/10.1007/s10298-010-0588-z.
dc.relationPassalacqua, N. G.; Guarrera, P. M.; De Fine, G. Contribution to the Knowledge of the Folk Plant Medicine in Calabria Region (Southern Italy). Fitoterapia 2007, 78 (1), 52¿68. https://doi.org/10.1016/j.fitote.2006.07.005.
dc.relationTagarelli, G.; Tagarelli, A.; Piro, A. Folk Medicine Used to Heal Malaria in Calabria (Southern Italy). J. Ethnobiol. Ethnomedicine 2010, 6, 27. https://doi.org/10.1186/1746-4269-6-27.
dc.relationArias Alzate, E. Plantas Medicinales, 20th ed.; La pluma de oro, 1991.
dc.relationButterweck, V.; Khan, S. R. Herbal Medicines in the Management of Urolithiasis: Alternative or Complementary? Planta Med. 2009, 75 (10), 1095¿1103. https://doi.org/10.1055/s-0029-1185719.
dc.relationChen, Y.-C.; Ho, C.-Y.; Chen, L.-D.; Hsu, S.-F.; Chen, W.-C. Wu-Ling-San Formula Inhibits the Crystallization of Calcium Oxalate In Vitro. Am. J. Chin. Med. 2007, 35 (03), 533¿541. https://doi.org/10.1142/S0192415X07005041.
dc.relationKoide, T.; Yamaguchi, S.; Utsunomiya, M.; YoshiokaY, T.; Sugiyawia, K. The Inhibitory Effect of Kampou Extracts in Vitro Calcium Oxalate Crystallization and in Vivo Stone Formation in an Animal Model. Int. J. Urol. 1995, 2 (2), 81¿86. https://doi.org/10.1111/j.1442-2042.1995.tb00429.x.
dc.relationAtmani, F.; Slimani, Y.; Mimouni, M.; Hacht, B. Prophylaxis of Calcium Oxalate Stones by Herniaria Hirsuta on Experimentally Induced Nephrolithiasis in Rats. BJU Int. 2003, 92 (1), 137¿140. https://doi.org/10.1046/j.1464-410X.2003.04289.x.
dc.relationGrases, F.; Ramis, M.; Costa-Bauzá, A.; March, J. G. Effect of Herniaria Hirsuta and Agropyron Repens on Calcium Oxalate Urolithiasis Risk in Rats. J. Ethnopharmacol. 1995, 45 (3), 211¿214. https://doi.org/10.1016/0378-8741(94)01218-O.
dc.relationBarros, M. E.; Lima, R.; Mercuri, L. P.; Matos, J. R.; Schor, N.; Boim, M. A. Effect of Extract of Phyllanthus Niruri on Crystal Deposition in Experimental Urolithiasis. Urol. Res. 2006, 34 (6), 351¿357. https://doi.org/10.1007/s00240-006-0065-1.
dc.relationHesse, A.; Wuzel, H.; Vahlensieck, W. Significance of Glycosaminoglycans for the Formation of Calcium Oxalate Stones. Am. J. Kidney Dis. 1991, 17 (4), 414¿419. https://doi.org/10.1016/S0272-6386(12)80634-2.
dc.relationAngell, A. H.; Resnick, M. I. Surface Interaction Between Glycosaminoglycans and Calcium Oxalate. J. Urol. 1989, 141 (5), 1255¿1258. https://doi.org/10.1016/S0022-5347(17)41233-X.
dc.relationZeng, X.; Xi, Y.; Jiang, W. Protective Roles of Flavonoids and Flavonoid-Rich Plant Extracts against Urolithiasis: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59 (13), 2125¿2135. https://doi.org/10.1080/10408398.2018.1439880.
dc.relationBudzianowki, J.; Skrzypczak, L.; Walkowiak, D. Flavonoids of Parietaria Officinalis. J. Nat. Prod. 1985, 48 (2), 336¿337. https://doi.org/10.1021/np50038a033.
dc.relationUniversidad Nacional de Colombia: Collections. http://www.biovirtual.unal.edu.co/en/collections/result/species/Parietaria%20debilis/plants/ (accessed 2021-09-22).
dc.relationChaves, J. O.; de Souza, M. C.; da Silva, L. C.; Lachos-Perez, D.; Torres-Mayanga, P. C.; Machado, A. P. da F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A. V.; Barbero, G. F.; Rostagno, M. A. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. https://doi.org/10.3389/fchem.2020.507887.
dc.relationZahari, C. N. M.; Sham, M. M.; Shahabudin, S.; Ab Rahim, M.; Azmi, N. S. A RAPID QUANTITATIVE DYE-BINDING METHOD OF SCREENING GLYCOSAMINOGLYCANS PRESENCE IN MEDICINAL PLANTS. Asian J. Pharm. Clin. Res. 2019, 12 (1), 396. https://doi.org/10.22159/ajpcr.2019.v12i1.30283.
dc.relationSuhaity, N.; Mazadillina, C. Halal Source of Medication: Glycosaminoglycan Derived Medicinal Plant. Int. J. Appl. Chem. 2016, 12, 803¿810.
dc.relationPhytochemical Screening and Determination of Phenolics and Flavonoids in Dillenia Pentagyna Using UV¿Vis and FTIR Spectroscopy. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 242, 118717. https://doi.org/10.1016/j.saa.2020.118717.
dc.relationLin, J.-Y.; Tang, C.-Y. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as Well as Their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2007, 101 (1), 140¿147. https://doi.org/10.1016/j.foodchem.2006.01.014.
dc.relationChang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10 (3).
dc.relationSarigul, N.; Korkmaz, F.; Kurultak, ¿. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9 (1), 20159. https://doi.org/10.1038/s41598-019-56693-4.
dc.relationCosta-Bauzá, A.; Isern, B.; Perelló, J.; Sanchis, P.; Grases, F. Factors Affecting the Regrowth of Renal Stones in Vitro: A Contribution to the Understanding of Renal Stone Development. Scand. J. Urol. Nephrol. 2005, 39 (3), 194¿199. https://doi.org/10.1080/00365590510031101.
dc.relationSutor, D. J. A Simple Method for Studying the Formation of Calcium Oxalate. Br. J. Urol. 1976, 48 (3), 177¿182. https://doi.org/10.1111/j.1464-410X.1976.tb10196.x.
dc.relationChung, J.; Granja, I.; Taylor, M. G.; Mpourmpakis, G.; Asplin, J. R.; Rimer, J. D. Molecular Modifiers Reveal a Mechanism of Pathological Crystal Growth Inhibition. Nature 2016, 536 (7617), 446¿450. https://doi.org/10.1038/nature19062.
dc.relationShanthil, M.; Sandeep, K.; Sajith, P. K. Cooperative Effects of Na + and Citrates on the Dissolution of Calcium Oxalate Crystals. Phys. Chem. Chem. Phys. 2020, 22 (8), 4788¿4792. https://doi.org/10.1039/C9CP06499K.
dc.relationZhai, W.; Zheng, J.; Yao, X.; Peng, B.; Liu, M.; Huang, J.; Wang, G.; Xu, Y. Catechin Prevents the Calcium Oxalate Monohydrate Induced Renal Calcium Crystallization in NRK-52E Cells and the Ethylene Glycol Induced Renal Stone Formation in Rat. BMC Complement. Altern. Med. 2013, 13 (1), 228. https://doi.org/10.1186/1472-6882-13-228.
dc.relationKesavan, M.; Kaliaperumal, R.; Tamilmani, E.; Shanmugam, K. In Vitro Evaluation of Calcium Oxalate Monohydrate Crystals Influenced by Costus Igneus Aqueous Extract. Scand. J. Urol. Nephrol. 2012, 46 (4), 290¿297. https://doi.org/10.3109/00365599.2012.669792.
dc.relationChaiyarit, S.; Singhto, N.; Thongboonkerd, V. Calcium Oxalate Monohydrate Crystals Internalized into Renal Tubular Cells Are Degraded and Dissolved by Endolysosomes. Chem. Biol. Interact. 2016, 246, 30¿35. https://doi.org/10.1016/j.cbi.2015.12.018.
dc.relationMüller, S.; Schäfer, O.; Keller, E. Rock Salt¿Urea¿Water (1/1/1) at 293 and 117 K. Acta Crystallogr. C 2008, 64 (8), m300¿m304. https://doi.org/10.1107/S0108270108022427.
dc.relationYates, P. Chemical Calculations: Mathematics for Chemistry, Second Edition; CRC Press, 2007.
dc.relationSádovská, G.; Wolf, G. Enthalpy of Dissolution and Thermal Dehydration of Calcium Oxalate Hydrates. J. Therm. Anal. Calorim. 2015, 119 (3), 2063¿2068. https://doi.org/10.1007/s10973-014-4350-x.
dc.relationValido, I. H.; Rius¿Bartra, J. M.; Boada, R.; Resina¿Gallego, M.; Valiente, M.; López¿Mesas, M. Characterization of Calcium Oxalate Hydrates and the Transformation Process. ChemPhysChem 2020, 21 (22), 2583¿2593. https://doi.org/10.1002/cphc.202000684.
dc.relationCampostrini, R.; Grigiante, M.; Brighenti, M. Potentialities of Mass Spectrometry on Activation Energy and Secondary Reactions Determination of Calcium Oxalate Thermal Decomposition. Int. J. Chem. Kinet. 2021, 53 (10), 1082¿1100. https://doi.org/10.1002/kin.21504.
dc.relationUrzúa, U.; Kersten, P. J.; Vicuña, R. Kinetics of Mn3+¿Oxalate Formation and Decay in Reactions Catalyzed by Manganese Peroxidase OfCeriporiopsis Subvermispora. Arch. Biochem. Biophys. 1998, 360 (2), 215¿222. https://doi.org/10.1006/abbi.1998.0952.
dc.relationThomas, H. Senescence, Ageing and Death of the Whole Plant. New Phytol. 2013, 197 (3), 696¿711. https://doi.org/10.1111/nph.12047.
dc.relationSun, T.; Mai, S.; Mao, H.; Li, H.; Duan, Y.; Meng, S.; Bao, J.; Ding, N.; Zong, C. Conjugate of Structurally Reassigned Pneumococcal Serotype 31 Polysaccharide with CRM197 Elicited Potent Immune Response. Carbohydr. Polym. 2022, 289, 119414. https://doi.org/10.1016/j.carbpol.2022.119414.
dc.relationSpeciale, I.; Notaro, A.; Garcia-Vello, P.; Di Lorenzo, F.; Armiento, S.; Molinaro, A.; Marchetti, R.; Silipo, A.; De Castro, C. Liquid-State NMR Spectroscopy for Complex Carbohydrate Structural Analysis: A Hitchhiker¿s Guide. Carbohydr. Polym. 2022, 277, 118885. https://doi.org/10.1016/j.carbpol.2021.118885.
dc.relationGudlavalleti, S. K.; Szymanski, C. M.; Jarrell, H. C.; Stephens, D. S. In Vivo Determination of Neisseria Meningitidis Serogroup A Capsular Polysaccharide by Whole Cell High-Resolution Magic Angle Spinning NMR Spectroscopy. Carbohydr. Res. 2006, 341 (4), 557¿562. https://doi.org/10.1016/j.carres.2005.11.036.
dc.relationCamilli, R.; Spencer, B. L.; Moschioni, M.; Pinto, V.; Berti, F.; Nahm, M. H.; Pantosti, A. Identification of Streptococcus Pneumoniae Serotype 11E, Serovariant 11Av and Mixed Populations by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and Flow Cytometric Serotyping Assay (FCSA). PLoS ONE 2014, 9 (6), e100722. https://doi.org/10.1371/journal.pone.0100722.
dc.relationFlasar, C. What Is Urine Specific Gravity? Nursing (Lond.) 2008, 38 (7), 14. https://doi.org/10.1097/01.NURSE.0000325315.41513.a0.
dc.relationYang, C.-Y.; Chen, F.-A.; Chen, C.-F.; Liu, W.-S.; Shih, C.-J.; Ou, S.-M.; Yang, W.-C.; Lin, C.-C.; Yang, A.-H. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration. PLoS ONE 2015, 10 (9), e0137460. https://doi.org/10.1371/journal.pone.0137460.
dc.relationRopero-Miller, J. D.; Paget-Wilkes, H.; Doering, P. L.; Goldberger, B. A. Effect of Oral Creatine Supplementation on Random Urine Creatinine, PH, and Specific Gravity Measurements. Clin. Chem. 2000, 46 (2), 295¿297. https://doi.org/10.1093/clinchem/46.2.295.
dc.relationOmar, G.; Fares, S.; Abdallah, L.; Almasri, M.; Slaileh, A.; Zurba, Z. Antibacterial Activity of Selected Palestinian Wild Plant Extracts against Multidrug-Resistant Clinical Isolate of Streptococcus Pneumoniae. J. Pharm. Res. 2013, 1, 963¿969.
dc.relationBEHZADI, P.; BEHZADI, E.; YAZDANBOD, H.; AGHAPOUR, R.; AKBARI CHESHMEH, M.; SALEHIAN OMRAN, D. A Survey on Urinary Tract Infections Associated with the Three Most Common Uropathogenic Bacteria. Mædica 2010, 5 (2), 111¿115.
dc.relationTaylor, T. A.; Unakal, C. G. Staphylococcus Aureus. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023.
dc.relationHernández Moreno, L. V.; Pabón Baquero, L. C.; Hernández-Rodríguez, P. Estudio Fitoquímico y Actividad Antimicrobiana de Plantas Medicinales Empleadas Para El Control de Infecciones Urinarias. Rev. Fac. Cienc. Básicas 2021, 16 (1), 43¿56. https://doi.org/10.18359/rfcb.4896.
dc.relationScott, L. J.; Keam, S. J. Lumasiran: First Approval. Drugs 2021, 81 (2), 277¿282. https://doi.org/10.1007/s40265-020-01463-0.
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSíntesis y caracterización de cálculos renales artificiales, y el estudio del efecto de extractos de Parietaria officinalis sobre su formación y solubilidad
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución