dc.contributor | Saldarriaga Valderrama, Juan Guillermo | |
dc.contributor | Water Distribution and Sewerage Systems Research Center (CIACUA) | |
dc.creator | Gómez Molina, Santiago | |
dc.date.accessioned | 2023-07-24T20:26:33Z | |
dc.date.accessioned | 2023-09-07T00:56:34Z | |
dc.date.available | 2023-07-24T20:26:33Z | |
dc.date.available | 2023-09-07T00:56:34Z | |
dc.date.created | 2023-07-24T20:26:33Z | |
dc.date.issued | 2023-07-24 | |
dc.identifier | http://hdl.handle.net/1992/68697 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727997 | |
dc.description.abstract | This is the extended version of a research article developed to understand assertive applications of fractal analysis in hydraulic design and operation. By understanding the fractal behavior of feasible design outcomes obtained through mono-objective and bi-objective methodologies, it was possible to determine how a measurement of dispersion, organization and complexity could be implemented in hydraulic design and operation through four approaches: (1) in the definition of the topological layout; (2) in the achievement of redundancy requirements; (3) as a pipe aging indicator; (4) as a demand variation indicator. This version can help the reader understand the preliminary stage of this research and some broad ideas that will be better developed in a final published version of this work that will be submitted to the Urban Water Journal. In the future, the conclusions and questions arising from this research hope to contribute to the generalization of the governing principles of Hydraulic Engineering that allow to develop tools to make good design solutions more accessible and easier to implement by stakeholders, water utilities and society. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | [1] D. F. Yates, A. B. Templeman, and T. B. Boffey, "The Computational Complexity of the Problem of Determining Least Capital Cost Designs for Water Supply Networks," Engineering Optimization, vol. 7, no. 2, pp. 143-155, Jan. 1984, doi: 10.1080/03052158408960635. | |
dc.relation | [2] J. Saldarriaga et al., "A Direct Approach for the Near-Optimal Design of Water Distribution Networks Based on Power Use," Water (Basel), vol. 12, no. 4, p. 1037, Apr. 2020, doi: 10.3390/w12041037. | |
dc.relation | [3] A. Jaramillo and J. Saldarriaga, "Fractal-Based Analysis of the Optimal Hydraulic Gradient Surface in the Optimized Design of Water Distribution Networks," in World Environmental and Water Resources Congress 2022, Reston, VA: American Society of Civil Engineers, Jun. 2022, pp. 1000-1014. doi: 10.1061/9780784484258.093. | |
dc.relation | [4] I. Wu, "Design of Drip Irrigation Main Lines," Journal of the Irrigation and Drainage Division, vol. 101, no. 4, pp. 265-278, Dec. 1975, doi: 10.1061/JRCEA4.0001064. | |
dc.relation | [5] A. Jaramillo and J. Saldarriaga, "Fractal Analysis of the Optimal Hydraulic Gradient Surface in Water Distribution Networks," J Water Resour Plan Manag, vol. 149, no. 1, Jan. 2023, doi: 10.1061/(ASCE)WR.1943-5452.0001608. | |
dc.relation | [6] A. Jaramillo, "Análisis de la geometría fractal de la superficie óptima de presiones en el diseño optimizado de redes de distribución de agua potable," Universidad de los Andes, Bogotá, Colombia, 2020. | |
dc.relation | [7] K. Diao, D. Butler, and B. Ulanicki, "Fractality in water distribution networks: application to criticality analysis and optimal rehabilitation," Urban Water J, vol. 18, no. 10, pp. 885-895, Nov. 2021, doi: 10.1080/1573062X.2021.1948076. | |
dc.relation | [8] M. Iwanek, D. Kowalski, B. Kowalska, and P. Suchorab, "Fractal Geometry in Designing and Operating Water Networks," Journal of Ecological Engineering, vol. 21, no. 6, pp. 229-236, Aug. 2020, doi: 10.12911/22998993/123501. | |
dc.relation | [9] K. Vargas, C. Salcedo, and J. Saldarriaga, "Dimensión fractal e identificación de potenciales sectores de servicio en redes de distribución de agua potable utilizando criterios hidráulicos," Revista Recursos Hídricos, vol. 40, no. 2, pp. 27-38, Dec. 2019, doi: 10.5894/rh40n2-cti3. | |
dc.relation | [10] J. Saldarriaga, C. Salcedo, M. A. González, C. Ortiz, F. Wiesner, and S. Gómez, "On the Evolution of the Optimal Design of WDS: Shifting towards the Use of a Fractal Criterion," Water (Basel), vol. 14, no. 23, p. 3795, Nov. 2022, doi: 10.3390/w14233795. | |
dc.relation | [11] K. Falconer, Fractal Geometry. Chichester, UK: John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470013850. | |
dc.relation | [12] B. Mandelbrot, "Fractals: Form, Chance and Dimension," J Fluid Mech, vol. 92, no. 1, pp. 206-208, May 1979, doi: 10.1017/S0022112079210586. | |
dc.relation | [13] O. Fujiwara and D. B. Khang, "A two-phase decomposition method for optimal design of looped water distribution networks," Water Resour Res, vol. 26, no. 4, pp. 539-549, Apr. 1990, doi: 10.1029/WR026i004p00539. | |
dc.relation | [14] J. Reca and J. Martínez, "Genetic algorithms for the design of looped irrigation water distribution networks," Water Resour Res, vol. 42, no. 5, May 2006, doi: 10.1029/2005WR004383. | |
dc.relation | [15] C. Bragalli, C. D'Ambrosio, J. Lee, A. Lodi, and P. Toth, "On the optimal design of water distribution networks: a practical MINLP approach," Optimization and Engineering, vol. 13, no. 2, pp. 219-246, Jun. 2012, doi: 10.1007/s11081-011-9141-7. | |
dc.relation | [16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002, doi: 10.1109/4235.996017. | |
dc.relation | [17] D. Páez, C. Salcedo, A. Garzón, M. A. González, and J. Saldarriaga, "Use of Energy-Based Domain Knowledge as Feedback to Evolutionary Algorithms for the Optimization of Water Distribution Networks," Water (Basel), vol. 12, no. 11, p. 3101, Nov. 2020, doi: 10.3390/w12113101. | |
dc.relation | [18] Q. Wang, D. A. Savi, and Z. Kapelan, "GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems," Water Resour Res, vol. 53, no. 3, pp. 1997-2015, Mar. 2017, doi: 10.1002/2016WR019854. | |
dc.relation | [19] R. E. Featherstone and K. K. El'Jumaily, "Optimal Diameter Selection for Pipe Networks," Journal of Hydraulic Engineering, vol. 109, no. 2, pp. 221-234, Feb. 1983, doi: 10.1061/(ASCE)0733-9429(1983)109:2(221). | |
dc.relation | [20] J. Saldarriaga, S. Takahashi, F. Hernéndez, D. M. Díaz, and S. Ochoa, "An Energy Methodology for the Design of Water Distribution Systems," in World Environmental and Water Resources Congress 2010, Reston, VA: American Society of Civil Engineers, May 2010, pp. 4303-4313. doi: 10.1061/41114(371)437. | |
dc.relation | [21] S. Atkinson, R. Farmani, F. A. Memon, and D. Butler, "Reliability Indicators for Water Distribution System Design: Comparison," J Water Resour Plan Manag, vol. 140, no. 2, pp. 160-168, Feb. 2014, doi: 10.1061/(ASCE)WR.1943-5452.0000304. | |
dc.relation | [22] X. Zhan, F. Meng, S. Liu, and G. Fu, "Comparing Performance Indicators for Assessing and Building Resilient Water Distribution Systems," J Water Resour Plan Manag, vol. 146, no. 12, Dec. 2020, doi: 10.1061/(ASCE)WR.1943-5452.0001303. | |
dc.relation | [23] H. Monsef, M. Naghashzadegan, R. Farmani, and A. Jamali, "Deficiency of Reliability Indicators in Water Distribution Networks," J Water Resour Plan Manag, vol. 145, no. 6, Jun. 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001053. | |
dc.relation | [24] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460. | |
dc.relation | [25] K. Deb, M. Mohan, and S. Mishra, "Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions," Evol Comput, vol. 13, no. 4, pp. 501-525, Dec. 2005, doi: 10.1162/106365605774666895. | |
dc.relation | [26] C. R. Tolle, T. R. McJunkin, and D. J. Gorsich, "Suboptimal minimum cluster volume cover-based method for measuring fractal dimension," IEEE Trans Pattern Anal Mach Intell, vol. 25, no. 1, pp. 32-41, Jan. 2003, doi: 10.1109/TPAMI.2003.1159944. | |
dc.relation | [27] G. Zhou and N. S.-N. Lam, "A comparison of fractal dimension estimators based on multiple surface generation algorithms," Comput Geosci, vol. 31, no. 10, pp. 1260-1269, Dec. 2005, doi: 10.1016/j.cageo.2005.03.016. | |
dc.relation | [28] K. Vargas and J. Saldarriaga, "Analysis of Fractality in Water Distribution Networks Using Hydraulic Criteria," in World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis, American Society of Civil Engineers, 2019, pp. 564-572. | |
dc.relation | [29] Q. Wang, M. Guidolin, D. Savic, and Z. Kapelan, "Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front," J Water Resour Plan Manag, vol. 141, no. 3, Mar. 2015, doi: 10.1061/(ASCE)WR.1943-5452.0000460. | |
dc.relation | [30] L. Ormsbee and T. Walski, "Darcy-Weisbach versus Hazen-Williams: No Calm in West Palm," in World Environmental and Water Resources Congress 2016, Reston, VA: American Society of Civil Engineers, May 2016, pp. 455-464. doi: 10.1061/9780784479865.048. | |
dc.relation | [31] L. A. Rossman, "EPANET 2 Users Manual," Cincinnati, Ohio, Sep. 2000. | |
dc.relation | [32] J. Saldarriaga, L. Pulgarrn, P. Cuero, and N. Duque, "Software para la enseñanza de hidráulica de tuberías (Pipeline Hydraulics Academic Software)," SSRN Electronic Journal, 2017, doi: 10.2139/ssrn.3113745. | |
dc.relation | [33] The Matwhworks Inc., "MATLAB (R2022b)." Natick, Massachussets, 2022. | |
dc.relation | [34] D. G. Eliades, M. Kyriakou, S. Vrachimis, and M. M. Polycarpou, "EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB," in 14th International Conference on Computing and Control for the Water Industry (CCWI), The Netherlands, 2016. | |
dc.relation | [35] K. A. Klise, M. Bynum, D. Moriarty, and R. Murray, "A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study," Environmental Modelling & Software, vol. 95, pp. 420-431, Sep. 2017, doi: 10.1016/j.envsoft.2017.06.022. | |
dc.relation | [36] G. van Rossum, "Python Tutorial. Release 3.11.4." Python Software Foundation, Fredericksburg, Virginia, 2023. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Assessment of the fractal dimension as a design and operation criterion of water distribution systems | |
dc.type | Trabajo de grado - Pregrado | |