dc.contributor | Osma Cruz, Johann Faccelo | |
dc.contributor | Plazas Tuttle, Jaime Guillermo | |
dc.contributor | Husserl Orjuela, Johana | |
dc.contributor | Genç Altürk, Rükan | |
dc.contributor | CMUA - Centro de Microelectrónica de la Universidad de los Andes | |
dc.creator | Guillén Pacheco, Amaimen Amador | |
dc.date.accessioned | 2023-07-21T20:34:06Z | |
dc.date.accessioned | 2023-09-07T00:54:43Z | |
dc.date.available | 2023-07-21T20:34:06Z | |
dc.date.available | 2023-09-07T00:54:43Z | |
dc.date.created | 2023-07-21T20:34:06Z | |
dc.date.issued | 2023-05-30 | |
dc.identifier | http://hdl.handle.net/1992/68637 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727955 | |
dc.description.abstract | In this study, carbon dots (CDs) were used to detect naphthol blue-black from one synthetic wastewater matrix. Using microreactors as mixers and measuring absorbance changes of CDs to detect contaminant variations. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | Razzak, R.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168 | |
dc.relation | Anser, M.K.; Hanif, I.; Vo, X.V.; Alharthi, M. The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries. Environ. Sci. Pollut. Res. 2020, 27, 32518-32532. https://doi.org/10.1007/s11356-020-09348-1 | |
dc.relation | Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A-S.; Jeon, B-H.; Park, Y-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1-19. https://doi.org/10.1016/j.jiec.2022.05.013 | |
dc.relation | Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060 | |
dc.relation | Hussain, C.M.; Paulraj, M.S.; Nuzhat, S. Chapter 9 - Source reduction and waste minimization in textile industries. Source Reduction and Waste Minimization 2022, 159-168. https://doi.org/10.1016/B978-0-12-824320-6.00010-1 | |
dc.relation | Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere 2022, 293, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464 | |
dc.relation | Benkhaya, S.; M' rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891 | |
dc.relation | Afanga, H.; Zazou, H.; Titchou, F.E.; El Gaayda, J.; Sopaj, F.; Akbour, R.A.; Hamdani, M. Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD /carbon felt cell. J. Environ. Chem. Eng. 2021, 9, 104498. https://doi.org/10.1016/j.jece.2020.104498 | |
dc.relation | Baghel, R.; Upadhyaya, S.; Chaurasia, S.P.; Singh, K.; Kalla, S. Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. J. Clean. Prod. 2018, 199, 900-915. https://doi.org/10.1016/j.jclepro.2018.07.214 | |
dc.relation | Shahinpour, A.; Tanhaei, B.; Ayati, A.; Beiki, H.; Sillanpää, M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J. Mol. Liq. 2022, 366, 120303. https://doi.org/10.1016/j.molliq.2022.120303 | |
dc.relation | Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020, 18, 1113-1143. https://doi.org/10.1007/s10311-020-01000-1 | |
dc.relation | Mollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 2004, 114, 199-210. https://doi.org/10.1016/j.jhazmat.2004.08.009 | |
dc.relation | Karcher, S.; Kornmüller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002, 36, 4717-4724. https://doi.org/10.1016/s0043-1354(02)00195-1 | |
dc.relation | Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Llorca, M.; Sánchez Pérez, J.A.; Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment,¿ J. Hazard. Mater. 2017, 323, 442-451. https://doi.org/10.1016/j.jhazmat.2016.03.013 | |
dc.relation | Shafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Ahmed, A.; Nawaz, Z.; Park, Y-K. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. Chem. Eng. J. 2021, 420, 130529. https://doi.org/10.1016/j.cej.2021.130529 | |
dc.relation | Khataee, A.R.; Dehghan, G.; Ebadi, A.; Zarei, M.; Pourhassan, M. Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour. Technol. 2010, 101, 2252-2258. https://doi.org/10.1016/j.biortech.2009.11.079 | |
dc.relation | Robinson, T.; Nigam, P.S. Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF). Appl. Biochem. Biotechnol. 2008, 151, 618-628. https://doi.org/10.1007/s12010-008-8272-6 | |
dc.relation | Zhang, J.; Chen, S.; Zhang, Y.; Quan, X.; Zhao, H.; Zhang, Y. Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process. J. Hazard. Mater. 2014, 274, 198-204. https://doi.org/10.1016/j.jhazmat.2014.04.022 | |
dc.relation | Ertugay, N.; Acar, F.N. The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst. Appl. Surf. Sci. 2014, 318, 121-126. https://doi.org/10.1016/j.apsusc.2014.01.178 | |
dc.relation | Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275-290. https://doi.org/10.1016/j.biori.2019.09.001 | |
dc.relation | Ltaief, S.; Jabli, M.; Ben Abdessalem, S. Immobilization of copper oxide nanoparticles onto chitosan biopolymer: Application to the oxidative degradation of Naphthol blue black. Carbohydr. Polym. 2021, 261, 117908. https://doi.org/10.1016/j.carbpol.2021.11790 | |
dc.relation | Lu, S.; Li, Z.; Fu, X.; Xie, Z.; Zheng, M. Carbon dots-based fluorescence and UV¿vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dyes Pigm. 2021, 187, 109126. https://doi.org/10.1016/j.dyepig.2020.109126 | |
dc.relation | Alas, M.O.; Alkas, F.B.; Aktas Sukuroglu, A.; Genc Alturk, R.; Battal, D. Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. J. Mater. Sci. 2020, 55, 15074-15105. https://doi.org/10.1007/s10853-020-05054-y | |
dc.relation | Yan, F.; Zhang, H.; Sun, Z.; Sun, X.; Jiang, Y.; Bai, Z.; Zu, F.; Chen, L. Carbon dots as building blocks for the construction of functional nanocomposite material. J. Iran Chem. Soc. 2020, 17, 1-15. https://doi.org/10.1007/s13738-019-01749-5 | |
dc.relation | Rub Pakkath, S.A.; Chetty, S.S.; Selvarasu, P.; Vadivel Murugan, A.; Kumar, Y.; Periyasamy, L.; Santhakumar, M.; Sadras, S.R.; Santhakumar, K. Transition Metal Ion (Mn2+, Fe2+, Co2+, and Ni2+)-Doped Carbon Dots Synthesized via Microwave-Assisted Pyrolysis: A Potential Nanoprobe for Magneto-fluorescent Dual-Modality Bioimaging. ACS Biomater. Sci. Eng. 2018, 4, 2582-2596. https://doi.org/10.1021/acsbiomaterials.7b00943 | |
dc.relation | Jeong, C.J.; Roy, A.K.; Kim, S.H.; Lee, J-E.; Jeong, J.H.; In, I.; Park, S.Y. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale 2014, 6, 15196-15202. http://dx.doi.org/10.1039/C4NR04805A | |
dc.relation | Wang, L.; Li, B.; Xu, F.; Shi, X.; Feng, D.; Wei, D.; Li, Y.; Feng, Y.; Wang, Y.; Jia, D.; Zhou, Y. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron. 2016, 79, 1-8. https://doi.org/10.1016/j.bios.2015.11.085 | |
dc.relation | Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, K. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526-9531. http://dx.doi.org/10.1039/C2DT30985H | |
dc.relation | Baker, S.N.; Baker, G.A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744. https://doi.org/10.1002/anie.200906623 | |
dc.relation | Deb, A.; Chowdhury, D. Unraveling the origin of photoluminescence in dual emissive biogenic carbon dot. Mater. Today Commun. 2022, 31, 103777. https://doi.org/10.1016/j.mtcomm.2022.103777 | |
dc.relation | Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta 2019, 186, 583. https://doi.org/10.1007/s00604-019-3688-y | |
dc.relation | Arroyave, J.M.; Ambrusi, R.E.; Robein, Y.; Pronsato, M.E.; Brizuela, G.; Di Nezio, M.S.; Centurión, M.E. Carbon dots structural characterization by solution-state NMR and UV¿visible spectroscopy and DFT modeling. Appl. Surf. Sci. 2021, 564, 150195. https://doi.org/10.1016/j.apsusc.2021.150195 | |
dc.relation | Sengupta, P.; Pramanik, K.; Datta, P.; Sarkar, P. Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for ¿click off¿ colorimetric detection of peroxide and glucosa. Biosens. Bioelectron. 2020, 154, 112072. https://doi.org/10.1016/j.bios.2020.112072 | |
dc.relation | Zhang, X.; Tu, R.; Peng, J.; Hou, C.; Wang, Z. Integration of mimic multienzyme systems in metal-metalloporphyrin gel composites for colorimetric sensing. Chem. Eng. J. 2021, 404, 126553. https://doi.org/10.1016/j.cej.2020.126553 | |
dc.relation | Zhang, R.; Liu, L.; Li, W.; Luo, X.; Wu, F. Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose. Colloids Surf. B: Biointerfaces 2022, 222, 113125. https://doi.org/10.1016/j.colsurfb.2023.113125 | |
dc.relation | Kaur, I.; Batra, V.; Kumar Reddy Bogireddy, N.; Torres Landa, S.D.; Agarwal, V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chem. 2023, 406, 135029. https://doi.org/10.1016/j.foodchem.2022.135029 | |
dc.relation | Burklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J.X.J. Chapter One - Advances in diagnostic microfluidics. Adv. Clin. Chem. 2020, 95, 1-72. https://doi.org/10.1016/bs.acc.2019.08.001 | |
dc.relation | Liu, G.; Du, T.; Chen, J.; Hao, X.; Yang, F.; He, H.; Meng, T.; Wang, Y. Microfluidic aqueous two-phase system-based nitrifying bacteria encapsulated colloidosomes for green and sustainable ammonium-nitrogen wastewater treatment. Bioresour. Technol. 2021, 342, 126019. https://doi.org/10.1016/j.biortech.2021.126019 | |
dc.relation | Chen, Z.; Song, Q.; Ni, L.; Jiang, J.; Yu, Y. Microfluidic synthesis of ZnWO4 nanoparticles and its performance in DMSO-containing wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 106528. https://doi.org/10.1016/j.jece.2021.106528 | |
dc.relation | Bragheri, F.; Martinez Vazquez, R.; Osellame, R. Chapter 12.3 ¿ Microfluidics. MNT, 2020, 493-526. https://doi.org/10.1016/B978-0-12-817827-0.00057-6 | |
dc.relation | Gimondi, S.; Guimarães, C.F.; Vieira, S.F.; Gonçalves, V.M.F.; Tiritan, M.E.; Reis, R.L.; Ferreira, H.; Neves, N.M. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomed.: Nanotechnol. Biol. Med. 2022, 40, 102482. https://doi.org/10.1016/j.nano.2021.102482 | |
dc.relation | Li, Z.; Ding, X.; Yin, K.; Avery, L.; Ballesteros, E.; Liu, C. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens. Bioelectron. 2022, 199, 113865. https://doi.org/10.1016/j.bios.2021.113865 | |
dc.relation | Xiang, X.; Shang, Y.; Ye, Q.; Li, F.; Zhang, J.; Zhou, B.; Suo, H.; Chen, M.; Gu, Q.; Ding, Y.; Wu, Q. A Salmonella serogroup rapid identification system for food safety based on high throughput microfluidic chip combined with recombinase aided amplification. Sens. Actuators B Chem. 2022, 357, 131402. https://doi.org/10.1016/j.snb.2022.131402 | |
dc.relation | Deng, N.; Wang, Y.; Luo, G. A novel method for fast and continuous preparation of superfine titanium dioxide nanoparticles in microfluidic system. Particuology 2022, 60, 61-67. https://doi.org/10.1016/j.partic.2021.04.015 | |
dc.relation | Florez, S.L.; Campaña, A.L.; Noguera, M.J.; Quezada, V.; Fuentes, O.P.; Cruz, J.C.; Osma, J.F. CFD Analysis and Life Cycle Assessment of Continuous Synthesis of Magnetite Nanoparticles Using 2D and 3D Micromixers. Micromachines 2022, 13, 970. https://doi.org/10.3390/mi13060970 | |
dc.relation | Dalhatou, S.; Laminsi, S.; Pétrier, C.; Baup, S. Competition in sonochemical degradation of Naphthol Blue Black: Presence of an organic (nonylphenol) and a mineral (bicarbonate ions) matrix. J. Environ. Chem. Eng. 2019, 7, 102819. https://doi.org/10.1016/j.jece.2018.102819 | |
dc.relation | Ala¿, M.O.; Do¿an, G.; Yalcin, M.S.; Ozdemir, S.; Genç, R. Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega 2022, 7, 29967-29983. https://doi.org/10.1021/acsomega.2c02984 | |
dc.relation | Pate, K.; Safier, P. 12 - Chemical metrology methods for CMP quality. Advances in Chemical Mechanical Planarization (CMP) 2016, 299-325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7 | |
dc.relation | Chandra, S.; Laha, D.; Pramanik, A.; Ray Chowdhuri, A.; Karmakar, P.; Sahu, S. K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 2016, 31, 81¿ 87. https://doi.org/10.1002/bio.2927 | |
dc.relation | Perumal, S.; Atchudan, R.; Thirukumaran, P.; Yoon, D.H.; Lee, Y.R.; Cheong, I.W. Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. Chemosphere 2022, 286, 131760. https://doi.org/10.1016/j.chemosphere.2021.131760 | |
dc.relation | Nikolaou, S.; Vakros, J.; Diamadopoulos, E.; Mantzavinos, D. Sonochemical degradation of propylparaben in the presence of agro-industrial biochar. J. Environ. Chem. Eng. 2020, 8, 104010. https://doi.org/10.1016/j.jece.2020.104010 | |
dc.relation | Ashok Varman, G.; Kalanidhi, K.; Nagaraaj, P. Green synthesis of fluorescent carbon dots from canon ball fruit for sensitive detection of Fe3+ and catalytic reduction of textile dyes. Dyes Pigm. 2022, 199, 110101. https://doi.org/10.1016/j.dyepig.2022.110101 | |
dc.relation | Zhu, L.; Shen, D.; Zhang, H.; Luo, K.H.; Li, C. Fabrication of Z-scheme Bi7O9I3/g-C3N4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (¿) and organic pollutants. J. Hazard. Mater. 2023, 446, 130663. https://doi.org/10.1016/j.jhazmat.2022.130663 | |
dc.relation | Dang, V.D.; Adorna, J.; Annadurai, T.; Bui, T.A.N.; Tran, H.L.; Lin, L-Y.; Doong, R-A. Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin. Chem. Eng. J. 2021, 422, 130103. https://doi.org/10.1016/j.cej.2021.130103 | |
dc.relation | Zhang, F.; Marre, S.; Erriguible, A. Mixing intensification under turbulent conditions in a high pressure microreactor. Chem. Eng. J. 2020, 382, 122859. https://doi.org/10.1016/j.cej.2019.122859 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Synthesis and characterization of carbon dots for the detection of naphthol blue black | |
dc.type | Trabajo de grado - Maestría | |