dc.contributorOsma Cruz, Johann Faccelo
dc.contributorPlazas Tuttle, Jaime Guillermo
dc.contributorHusserl Orjuela, Johana
dc.contributorGenç Altürk, Rükan
dc.contributorCMUA - Centro de Microelectrónica de la Universidad de los Andes
dc.creatorGuillén Pacheco, Amaimen Amador
dc.date.accessioned2023-07-21T20:34:06Z
dc.date.accessioned2023-09-07T00:54:43Z
dc.date.available2023-07-21T20:34:06Z
dc.date.available2023-09-07T00:54:43Z
dc.date.created2023-07-21T20:34:06Z
dc.date.issued2023-05-30
dc.identifierhttp://hdl.handle.net/1992/68637
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727955
dc.description.abstractIn this study, carbon dots (CDs) were used to detect naphthol blue-black from one synthetic wastewater matrix. Using microreactors as mixers and measuring absorbance changes of CDs to detect contaminant variations.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Ambiental
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationRazzak, R.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168
dc.relationAnser, M.K.; Hanif, I.; Vo, X.V.; Alharthi, M. The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries. Environ. Sci. Pollut. Res. 2020, 27, 32518-32532. https://doi.org/10.1007/s11356-020-09348-1
dc.relationShabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A-S.; Jeon, B-H.; Park, Y-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1-19. https://doi.org/10.1016/j.jiec.2022.05.013
dc.relationKatheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
dc.relationHussain, C.M.; Paulraj, M.S.; Nuzhat, S. Chapter 9 - Source reduction and waste minimization in textile industries. Source Reduction and Waste Minimization 2022, 159-168. https://doi.org/10.1016/B978-0-12-824320-6.00010-1
dc.relationLan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere 2022, 293, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464
dc.relationBenkhaya, S.; M' rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891
dc.relationAfanga, H.; Zazou, H.; Titchou, F.E.; El Gaayda, J.; Sopaj, F.; Akbour, R.A.; Hamdani, M. Electrochemical oxidation of Naphthol Blue Black with different supporting electrolytes using a BDD /carbon felt cell. J. Environ. Chem. Eng. 2021, 9, 104498. https://doi.org/10.1016/j.jece.2020.104498
dc.relationBaghel, R.; Upadhyaya, S.; Chaurasia, S.P.; Singh, K.; Kalla, S. Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. J. Clean. Prod. 2018, 199, 900-915. https://doi.org/10.1016/j.jclepro.2018.07.214
dc.relationShahinpour, A.; Tanhaei, B.; Ayati, A.; Beiki, H.; Sillanpää, M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J. Mol. Liq. 2022, 366, 120303. https://doi.org/10.1016/j.molliq.2022.120303
dc.relationVieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020, 18, 1113-1143. https://doi.org/10.1007/s10311-020-01000-1
dc.relationMollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 2004, 114, 199-210. https://doi.org/10.1016/j.jhazmat.2004.08.009
dc.relationKarcher, S.; Kornmüller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002, 36, 4717-4724. https://doi.org/10.1016/s0043-1354(02)00195-1
dc.relationMiralles-Cuevas, S.; Oller, I.; Agüera, A.; Llorca, M.; Sánchez Pérez, J.A.; Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment,¿ J. Hazard. Mater. 2017, 323, 442-451. https://doi.org/10.1016/j.jhazmat.2016.03.013
dc.relationShafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Ahmed, A.; Nawaz, Z.; Park, Y-K. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. Chem. Eng. J. 2021, 420, 130529. https://doi.org/10.1016/j.cej.2021.130529
dc.relationKhataee, A.R.; Dehghan, G.; Ebadi, A.; Zarei, M.; Pourhassan, M. Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour. Technol. 2010, 101, 2252-2258. https://doi.org/10.1016/j.biortech.2009.11.079
dc.relationRobinson, T.; Nigam, P.S. Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF). Appl. Biochem. Biotechnol. 2008, 151, 618-628. https://doi.org/10.1007/s12010-008-8272-6
dc.relationZhang, J.; Chen, S.; Zhang, Y.; Quan, X.; Zhao, H.; Zhang, Y. Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process. J. Hazard. Mater. 2014, 274, 198-204. https://doi.org/10.1016/j.jhazmat.2014.04.022
dc.relationErtugay, N.; Acar, F.N. The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst. Appl. Surf. Sci. 2014, 318, 121-126. https://doi.org/10.1016/j.apsusc.2014.01.178
dc.relationLellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275-290. https://doi.org/10.1016/j.biori.2019.09.001
dc.relationLtaief, S.; Jabli, M.; Ben Abdessalem, S. Immobilization of copper oxide nanoparticles onto chitosan biopolymer: Application to the oxidative degradation of Naphthol blue black. Carbohydr. Polym. 2021, 261, 117908. https://doi.org/10.1016/j.carbpol.2021.11790
dc.relationLu, S.; Li, Z.; Fu, X.; Xie, Z.; Zheng, M. Carbon dots-based fluorescence and UV¿vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dyes Pigm. 2021, 187, 109126. https://doi.org/10.1016/j.dyepig.2020.109126
dc.relationAlas, M.O.; Alkas, F.B.; Aktas Sukuroglu, A.; Genc Alturk, R.; Battal, D. Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. J. Mater. Sci. 2020, 55, 15074-15105. https://doi.org/10.1007/s10853-020-05054-y
dc.relationYan, F.; Zhang, H.; Sun, Z.; Sun, X.; Jiang, Y.; Bai, Z.; Zu, F.; Chen, L. Carbon dots as building blocks for the construction of functional nanocomposite material. J. Iran Chem. Soc. 2020, 17, 1-15. https://doi.org/10.1007/s13738-019-01749-5
dc.relationRub Pakkath, S.A.; Chetty, S.S.; Selvarasu, P.; Vadivel Murugan, A.; Kumar, Y.; Periyasamy, L.; Santhakumar, M.; Sadras, S.R.; Santhakumar, K. Transition Metal Ion (Mn2+, Fe2+, Co2+, and Ni2+)-Doped Carbon Dots Synthesized via Microwave-Assisted Pyrolysis: A Potential Nanoprobe for Magneto-fluorescent Dual-Modality Bioimaging. ACS Biomater. Sci. Eng. 2018, 4, 2582-2596. https://doi.org/10.1021/acsbiomaterials.7b00943
dc.relationJeong, C.J.; Roy, A.K.; Kim, S.H.; Lee, J-E.; Jeong, J.H.; In, I.; Park, S.Y. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale 2014, 6, 15196-15202. http://dx.doi.org/10.1039/C4NR04805A
dc.relationWang, L.; Li, B.; Xu, F.; Shi, X.; Feng, D.; Wei, D.; Li, Y.; Feng, Y.; Wang, Y.; Jia, D.; Zhou, Y. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron. 2016, 79, 1-8. https://doi.org/10.1016/j.bios.2015.11.085
dc.relationMing, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, K. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526-9531. http://dx.doi.org/10.1039/C2DT30985H
dc.relationBaker, S.N.; Baker, G.A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744. https://doi.org/10.1002/anie.200906623
dc.relationDeb, A.; Chowdhury, D. Unraveling the origin of photoluminescence in dual emissive biogenic carbon dot. Mater. Today Commun. 2022, 31, 103777. https://doi.org/10.1016/j.mtcomm.2022.103777
dc.relationYan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta 2019, 186, 583. https://doi.org/10.1007/s00604-019-3688-y
dc.relationArroyave, J.M.; Ambrusi, R.E.; Robein, Y.; Pronsato, M.E.; Brizuela, G.; Di Nezio, M.S.; Centurión, M.E. Carbon dots structural characterization by solution-state NMR and UV¿visible spectroscopy and DFT modeling. Appl. Surf. Sci. 2021, 564, 150195. https://doi.org/10.1016/j.apsusc.2021.150195
dc.relationSengupta, P.; Pramanik, K.; Datta, P.; Sarkar, P. Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for ¿click off¿ colorimetric detection of peroxide and glucosa. Biosens. Bioelectron. 2020, 154, 112072. https://doi.org/10.1016/j.bios.2020.112072
dc.relationZhang, X.; Tu, R.; Peng, J.; Hou, C.; Wang, Z. Integration of mimic multienzyme systems in metal-metalloporphyrin gel composites for colorimetric sensing. Chem. Eng. J. 2021, 404, 126553. https://doi.org/10.1016/j.cej.2020.126553
dc.relationZhang, R.; Liu, L.; Li, W.; Luo, X.; Wu, F. Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose. Colloids Surf. B: Biointerfaces 2022, 222, 113125. https://doi.org/10.1016/j.colsurfb.2023.113125
dc.relationKaur, I.; Batra, V.; Kumar Reddy Bogireddy, N.; Torres Landa, S.D.; Agarwal, V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chem. 2023, 406, 135029. https://doi.org/10.1016/j.foodchem.2022.135029
dc.relationBurklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J.X.J. Chapter One - Advances in diagnostic microfluidics. Adv. Clin. Chem. 2020, 95, 1-72. https://doi.org/10.1016/bs.acc.2019.08.001
dc.relationLiu, G.; Du, T.; Chen, J.; Hao, X.; Yang, F.; He, H.; Meng, T.; Wang, Y. Microfluidic aqueous two-phase system-based nitrifying bacteria encapsulated colloidosomes for green and sustainable ammonium-nitrogen wastewater treatment. Bioresour. Technol. 2021, 342, 126019. https://doi.org/10.1016/j.biortech.2021.126019
dc.relationChen, Z.; Song, Q.; Ni, L.; Jiang, J.; Yu, Y. Microfluidic synthesis of ZnWO4 nanoparticles and its performance in DMSO-containing wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 106528. https://doi.org/10.1016/j.jece.2021.106528
dc.relationBragheri, F.; Martinez Vazquez, R.; Osellame, R. Chapter 12.3 ¿ Microfluidics. MNT, 2020, 493-526. https://doi.org/10.1016/B978-0-12-817827-0.00057-6
dc.relationGimondi, S.; Guimarães, C.F.; Vieira, S.F.; Gonçalves, V.M.F.; Tiritan, M.E.; Reis, R.L.; Ferreira, H.; Neves, N.M. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomed.: Nanotechnol. Biol. Med. 2022, 40, 102482. https://doi.org/10.1016/j.nano.2021.102482
dc.relationLi, Z.; Ding, X.; Yin, K.; Avery, L.; Ballesteros, E.; Liu, C. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens. Bioelectron. 2022, 199, 113865. https://doi.org/10.1016/j.bios.2021.113865
dc.relationXiang, X.; Shang, Y.; Ye, Q.; Li, F.; Zhang, J.; Zhou, B.; Suo, H.; Chen, M.; Gu, Q.; Ding, Y.; Wu, Q. A Salmonella serogroup rapid identification system for food safety based on high throughput microfluidic chip combined with recombinase aided amplification. Sens. Actuators B Chem. 2022, 357, 131402. https://doi.org/10.1016/j.snb.2022.131402
dc.relationDeng, N.; Wang, Y.; Luo, G. A novel method for fast and continuous preparation of superfine titanium dioxide nanoparticles in microfluidic system. Particuology 2022, 60, 61-67. https://doi.org/10.1016/j.partic.2021.04.015
dc.relationFlorez, S.L.; Campaña, A.L.; Noguera, M.J.; Quezada, V.; Fuentes, O.P.; Cruz, J.C.; Osma, J.F. CFD Analysis and Life Cycle Assessment of Continuous Synthesis of Magnetite Nanoparticles Using 2D and 3D Micromixers. Micromachines 2022, 13, 970. https://doi.org/10.3390/mi13060970
dc.relationDalhatou, S.; Laminsi, S.; Pétrier, C.; Baup, S. Competition in sonochemical degradation of Naphthol Blue Black: Presence of an organic (nonylphenol) and a mineral (bicarbonate ions) matrix. J. Environ. Chem. Eng. 2019, 7, 102819. https://doi.org/10.1016/j.jece.2018.102819
dc.relationAla¿, M.O.; Do¿an, G.; Yalcin, M.S.; Ozdemir, S.; Genç, R. Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega 2022, 7, 29967-29983. https://doi.org/10.1021/acsomega.2c02984
dc.relationPate, K.; Safier, P. 12 - Chemical metrology methods for CMP quality. Advances in Chemical Mechanical Planarization (CMP) 2016, 299-325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7
dc.relationChandra, S.; Laha, D.; Pramanik, A.; Ray Chowdhuri, A.; Karmakar, P.; Sahu, S. K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 2016, 31, 81¿ 87. https://doi.org/10.1002/bio.2927
dc.relationPerumal, S.; Atchudan, R.; Thirukumaran, P.; Yoon, D.H.; Lee, Y.R.; Cheong, I.W. Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. Chemosphere 2022, 286, 131760. https://doi.org/10.1016/j.chemosphere.2021.131760
dc.relationNikolaou, S.; Vakros, J.; Diamadopoulos, E.; Mantzavinos, D. Sonochemical degradation of propylparaben in the presence of agro-industrial biochar. J. Environ. Chem. Eng. 2020, 8, 104010. https://doi.org/10.1016/j.jece.2020.104010
dc.relationAshok Varman, G.; Kalanidhi, K.; Nagaraaj, P. Green synthesis of fluorescent carbon dots from canon ball fruit for sensitive detection of Fe3+ and catalytic reduction of textile dyes. Dyes Pigm. 2022, 199, 110101. https://doi.org/10.1016/j.dyepig.2022.110101
dc.relationZhu, L.; Shen, D.; Zhang, H.; Luo, K.H.; Li, C. Fabrication of Z-scheme Bi7O9I3/g-C3N4 heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (¿) and organic pollutants. J. Hazard. Mater. 2023, 446, 130663. https://doi.org/10.1016/j.jhazmat.2022.130663
dc.relationDang, V.D.; Adorna, J.; Annadurai, T.; Bui, T.A.N.; Tran, H.L.; Lin, L-Y.; Doong, R-A. Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin. Chem. Eng. J. 2021, 422, 130103. https://doi.org/10.1016/j.cej.2021.130103
dc.relationZhang, F.; Marre, S.; Erriguible, A. Mixing intensification under turbulent conditions in a high pressure microreactor. Chem. Eng. J. 2020, 382, 122859. https://doi.org/10.1016/j.cej.2019.122859
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSynthesis and characterization of carbon dots for the detection of naphthol blue black
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución