dc.contributorBrunetti, Andrés Eduardo
dc.contributorVives Flórez, Martha Josefina
dc.contributorRojas, Bibiana
dc.contributorMolina Escobar, Jorge Alberto
dc.contributorGrupo de Ecofisiologia, Comportamiento y Herpetología
dc.creatorPalacios Rodríguez, Pablo
dc.date.accessioned2023-01-31T22:10:22Z
dc.date.accessioned2023-09-07T00:53:47Z
dc.date.available2023-01-31T22:10:22Z
dc.date.available2023-09-07T00:53:47Z
dc.date.created2023-01-31T22:10:22Z
dc.date.issued2022-07-28
dc.identifierhttp://hdl.handle.net/1992/64426
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727933
dc.description.abstractThe study of biological models exhibiting dual cryptic-aposematic anti- predatory strategies based on their coloration, can shed important light on some of the great controversies in the evolution of aposematism. Among them, the greatest vulnerability faced by the first conspicuous individuals within a population; the link between conspicuous coloration and other traits indicative of condition, physiological performance and development of toxicity; and the consequences of aposematic coloration in contexts of courtship, sexual selection and reproductive isolation. In this context, this thesis investigates the functional and evolutionary origin, and the ecological correlation of the femoral and inguinal colorful spots in frog lineages of the superfamily Dendrobatoidae historically considered as cryptic.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ciencias - Biología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAmézquita A, Ramos, Oscar, González MC, Rodríguez Camilo, Medina I, Simões PI, Lima AP. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.
dc.relationAgarwal A, Garg S, Rakesh PK, Singh I, Mishra BK. (2010). Tensile behavior of glass fiber reinforced plastics subjected to different environmental conditions. Indian Journal of Engineering & Material Sciences,17, 471-476.
dc.relationBarnett JB, Michalis C, Scott-Samuel NE, Cuthill IC. (2018). Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proceedings of the National Academy of Sciences, 115, 6416-6421.
dc.relationBehrens RR. (1999). The role of artists in ship camouflage during World War I. Leonardo, 32, 53- 59.
dc.relationCaldwell JP. (1996). The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). Journal of Zoology, 240, 75-101
dc.relationCaro T, Sherratt TN, Stevens M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809.
dc.relationCaro T, Stoddard MC, Stuart-Fox D. (2017). Animal coloration research: why it matters. Philosophical Transactions of the Royal Society B, 372, 20160333.
dc.relationCott HB. (1940). Adaptive Colouration in Animals. Methuen, London.
dc.relationCrump ML. (2015). Anuran reproductive modes: evolving perspectives. Journal of Herpetology, 49, 1-16.
dc.relationCuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72.
dc.relationDaly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr. (1994). An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 32, 657-663.
dc.relationDarst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. American Naturalist, 165, 56-69.
dc.relationDuarte RC, Flores AA, Stevens M. (2017). Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160342.
dc.relationEndler JA. (1978). A predator's view of animal colour patterns. Evolutionary Biology, 11, 319- 364.
dc.relationEndler JA, Mappes J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372, 20160352.
dc.relationFraser S, Callahan A, Klassen D, Sherratt TN. (2007). Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society B, 274, 1325-1331.
dc.relationFrost Darrel R. (2019). Amphibian Species of the World: an Online Reference. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
dc.relationGordon SP, Kokko H, Rojas B, Nokelainen O, Mappes J. (2015). Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space. Journal of Animal Ecology, 84, 1555-1564.
dc.relationGrant T, Frost DR, Caldwell JP, Gagliardo R. Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel W. Wheeler WC. (2006) Phylogenetic systematics of dart poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262.
dc.relationGrant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel M, Machado DJ. Rueda- Almonacid JV. (2017). Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South American Journal of Herpetology, 12, S1-S90.
dc.relationHigginson AD, Delf J, Ruxton GD, Speed MP. (2011). Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology, 80, 384- 392.
dc.relationHödl W, Amézquita A. (2001). Visual signaling in anuran amphibians. Anuran communication, 121-141.
dc.relationHonma A, Mappes J, Valkonen JK. (2015). Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecology and Evolution, 5, 4863-4874.
dc.relationHughes A, Liggins E, Stevens M. (2019). Imperfect camouflage: how to hide in a variable world?. Proceedings of the Royal Society B, 286, 20190646.
dc.relationLeary CJ, Harris S. (2013). Steroid hormone levels in calling males and males practicing alternative non-calling mating tactics in the green treefrog, Hyla cinerea. Hormones and Behavior, 63, 20-24.
dc.relationMaan ME, Cummings ME. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. Evolution, 62, 2334-2345.
dc.relationMaan ME, Cummings ME. (2011). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, 1-14.
dc.relationMarler CA, Ryan MJ. (1996). Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. Journal of Zoology, 240, 397-409.
dc.relationMarples NM, Kelly DJ, Thomas RJ. (2005). Perspective: the evolution of warning coloration is not paradoxical. Evolution, 59, 933-940.
dc.relationMappes J, Marples NM, Endler JA. (2005). The complex business of survival by aposematism. Trends in Ecology and Evolution, 20, 598-603.
dc.relationMcMahon K, Marples N. (2017). Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. Journal of Avian Biology, 48, 448-454.
dc.relationMerilaita S. (1998). Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London B, 26, 1059-1064.
dc.relationMoore MC, Crews D. (1986). Sex steroid hormones in natural populations of a sexual whiptail lizard Cnemidophorus inornatus, a direct evolutionary ancestor of a unisexual parthenogen. General and Comparative Endocrinology, 63,424-430.
dc.relationNokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J. (2012). Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proceedings of the Royal Society B, 279, 257-265.
dc.relationNokelainen O, Valkonen J, Lindstedt C, Mappes J. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. Journal of Animal Ecology, 83, 598-605.
dc.relationOjala, K, Julkunen-Tiitto, R, Lindström, L, Mappes, J. (2005). Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evolutionary Ecology Research, 7, 1153-1170.
dc.relationPoulton EB. (1890). The colours of animals: Their meaning and use. Kegan Paul, Trench, Trubner, London.
dc.relationRodríguez A, Poth D, Schulz S, Vences M. (2011). Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biology Letters, 7, 414-418.
dc.relationRodríguez A, Poth D, Schulz S, Gehara M, Vences M. (2013). Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541-554.
dc.relationRoper TJ. (1994). Conspicuousness of prey retards reversal of learned avoidance. Oikos, 69, 115-118.
dc.relationRojas B, Valkonen J, Nokelainen O. (2015). Aposematism. Current Biology, 25, 350-351.
dc.relationRojas B. (2017). Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biological Reviews, 92, 1059-1080.
dc.relationRowe C, Guilford T. (1999). The evolution of multimodal warning displays. Evolutionary Ecology, 13, 655-671.
dc.relationRuxton GD. (2002). The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 32, 237-244.
dc.relationRuxton GD, Sherratt, T.N, Speed, M.P. (2004). Avoiding attack: The Evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.
dc.relationRuxton GD, Sherratt TN. (2006). Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B, 273, 2417-2424.
dc.relationRyan MJ. (2001). Anuran communication. Smithsonian Institution, Washington, DC.
dc.relationSantos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology, 7, 1000056.
dc.relationSavitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J. (2012). Sequestered defensive toxins in tetrapod vertebrates: principles, patterns and prospects for future studies. Chemoecology, 22, 141-158.
dc.relationSilverstone PA. (1975). Two new species of Colostethus (Amphibia: Anura: Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County, 268, 1-10.
dc.relationSinervo B. (2000). Adaptation, natural selection and optimal life-history allocation in the face of genetically based trade-offs. 41-64. In Mousseau TA, Sinervo B, and Endler J, editors. Adaptive genetic variation in the wild. Oxford University Press, Oxford, UK.
dc.relationSpeed MP, Ruxton GD. (2005). Aposematism: what should our starting point be?. Proceedings of the Royal Society B, 272, 431-438.
dc.relationStevens M, Cuthill, IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B, 273, 2141-2147.
dc.relationStevens M, Cuthill IC, Windsor AM, Walker H J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society B, 273, 2433-2438.
dc.relationStevens M, Merilaita S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423-427.
dc.relationStevens M, Ruxton GD. (2011). Linking the evolution and form of warning coloration in nature. Proceedings Transactions of the Royal Society B, 279, 417-426.
dc.relationStevens M. (2016). Color change, phenotypic plasticity, and camouflage. Frontiers in Ecology and Evolution, 4, 51.
dc.relationStevens M, Ruxton GD. (2019). The key role of behaviour in animal camouflage. Biological Reviews, 94, 116-134.
dc.relationSummers K, Clough ME. (2001). The evolution of coloration and toxicity in the poison frog familiy (Dendrobatidae) Proccedings of the Natural Academy of Science, 98, 6227-6232.
dc.relationThayer GH. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.
dc.relationThomas RJ, Marples NM, Cuthill IC, Takahashi M, Gibson EA. (2003). Dietary conservatism may facilitate the initial evolution of aposematism. Oikos, 101, 458-466.
dc.relationThomas RJ, Bartlett LA, Marples NM, Kelly DJ, Cuthill IC. (2004). Prey selection by wild birds can allow novel and conspicuous colour morphs to spread in prey populations. Oikos, 106, 285-294.
dc.relationTullberg BS, Gamberale-Stille G, Solbreck C. (2000). Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Ecological Entomology, 25, 220-225.
dc.relationTullberg BS, Merilaita S, Wiklund C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London B, 272, 1315-1321.
dc.relationWallace AR. (1867). Mimicry and other protective resemblances among animals. Westminster Foreign, 32, 1-43.
dc.relationWallace AR. (1877). The colours of animals and plants. American Naturalist, 11, 641-662.
dc.relationWells KD. (2007). The Ecology and behavior of amphibians. The University of Chicago Press, Chicago. USA
dc.relationZylinski S, Osorio D. (2013). Visual contrast and color in rapid learning of novel patterns by chicks. Journal of Experimental Biology, 216, 4184-4189.
dc.relationAcosta-Galvis AR, Vargas-Ramírez M. (2018). A new species of Hyloxalus Jiménez De La Espada, 1871 "1870" (Anura: Dendrobatidae: Hyloxalinae) from a cloud forest near Bogotá, Colombia, with comments on the subpunctatus clade. Vertebrate Zoology, 68, 123-141.
dc.relationAllen CE, Zwaan BJ, Brakefield PM. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56, 445-464.
dc.relationAmundsen T, Forsgren E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences, 98, 13155-13160.
dc.relationAndersson MB. (1994) Sexual selection: Princeton Univ Press.
dc.relationAngelier F, Wingfield JC, Tartu S, Chastel O. (2016). Does prolactin mediate parental and life- history decisions in response to environmental conditions in birds? A review. Hormones and Behavior, 77, 18-29.
dc.relationAspengren S, Sköld HN, Wallin M. (2009). Different strategies for color change. Cellular and Molecular Life Sciences, 66, 187-191.
dc.relationBagnara JT, Taylor JD, Hadley ME. (1968). The dermal chromatophore unit. Journal of Cell Biology, 38, 67-79.
dc.relationBell RC, Webster GN, Whiting MJ. (2017). Breeding biology and the evolution of dynamic sexual dichromatism in frogs. Journal Evolutionary Biology, 30, 2104-2115.
dc.relationBell RC, Zamudio KR. (2012). Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proceedings of the Royal Society B, 279, 4687-4693.
dc.relationBrown JL, Twomey E, Amezquita A, et al. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1-120.
dc.relationBrown PS. (1976). The effect of prolactin on color and skin pteridines in the frog, Rana pipiens. General and Comparative Endocrinology, 28, 426-433.
dc.relationBush SL, Bell DJ. (1997). Courtship and female competition in the Majorcan midwife toad, Alytes muletensis. Ethology, 103, 292-303.
dc.relationCaldwell JP. (2005). Amphibian faunas of two eastern Amazonian rainforest sites in Pará, Brazil. Sam Noble Oklahoma Museum of Natural History.
dc.relationCamargo CR, Visconti MA, Castrucci AML. (1999). Physiological color change in the bullfrog, Rana catesbeiana. Journal Experimental Zoology, 283, 160-169.
dc.relationCaro T, Stankowich T, Kiffner C, Hunter J. (2013). Are spotted skunks conspicuous or cryptic? Ethology Ecology & Evolution, 25, 144-160.
dc.relationCarvajal-Castro JD, Vargas-Salinas F, Casas-Cardona S, et al. (2021). Aposematism facilitates the diversification of parental care strategies in poison frogs. Scientific Reports, 11, 1-15.
dc.relationCossio R. (2008). Oophaga pumilio (Strawberry Poison Frog) Parental Care. Herpetolical Review, 39, 462.
dc.relationCrump ML. (1996). Parental care among the amphibia. In: Advances in the Study of Behavior. Elsevier, 25, 109-144.
dc.relationDaly JW, Gusovsky F, Myers CW, et al. (1994). First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon, 32, 279-285.
dc.relationDownie JR, Robinson E, Linklater-McLennan RJ. (2005). Are there costs to extended larval transport in the Trinidadian stream frog, Mannophryne trinitatis (Dendrobatidae)? Journal of Natural History, 39, 2023-2034.
dc.relationDuellman WE, Trueb L. (1986). Biology of Amphibians New York McGraw-Hill.
dc.relationDugas MB, Richards-Zawacki CL. (2015). A captive breeding experiment reveals no evidence of reproductive isolation among lineages of a polytypic poison frog. Biological Journal of the Linnean Society, 116, 52-62.
dc.relationDunn PO, Armenta JK, Whittingham LA. (2015). Natural and sexual selection act on different axes of variation in avian plumage color. Science Advances, 1, e1400155.
dc.relationEndler JA. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315-352.
dc.relationEngelbrecht-Wiggans E, Tumulty JP. (2019). "Reverse" sexual dichromatism in a Neotropical frog. Ethology, 125, 957-964.
dc.relationGaleano SP, Harms KE. (2016). Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behavioral Ecology and Sociobiology, 70, 83-97.
dc.relationGrant T. (2004). On the identities of Colostethus inguinalis (Cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (Cope, 1863) (Anura: Dendrobatidae). American Museum Novitates, 2004, 1--24.
dc.relationGrant T. (2007). A new, toxic species of Colostethus (Anura: Dendrobatidae: Colostethinae) from the Cordillera Central of Colombia. Zootaxa, 1555, 39-51.
dc.relationGreener MS, Hutton E, Pollock CJ, et al. (2020). Sexual dichromatism in the neotropical genus Mannophryne (Anura: Aromobatidae). PLoS One 15, e0223080.
dc.relationKahn TR, La Marca E, Lötters S, Brown, JL, Twomey E, Amézquita A. (2016). Aposematic poison frogs (Dendrobatidae) of the Andean countries: Bolivia, Colombia, Ecuador, Peru.
dc.relationKillius AM, Dugas MB. (2014). Tadpole transport by male Oophaga pumilio (Anura: Dendrobatidae): an observation and brief review. Herpetology Notes, 7, 747-749.
dc.relationKindermann C, Narayan EJ, Hero JM. (2014). The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One, 9, e114120.
dc.relationKodric-Brown A. (1998). Sexual dichromatism and temporary color changes in the reproduction of fishes. American Zoology, 38, 70-81.
dc.relationLa Marca E. (1994). Taxonomy of the frogs of the genus Mannophryne (Amphibia: Anura: Dendrobatida. Asociación de Amigos de Doñana.
dc.relationLiao WB, Lu X. (2009a). Sex recognition by male Andrew's toad Bufo andrewsi in a subtropical montane region. Behavioral Processes, 82, 100-103.
dc.relationLiao WB, Lu X. (2009b). Male mate choice in the Andrew's toad Bufo andrewsi: a preference for larger females. Journal of Ethology, 27, 413-417.
dc.relationLötters S, Jungfer KH, Henkel FW, Schmidt W. (2007). Poison frogs. Biology species Captive husbandry Ed Chimaira, Frankfurt am Main, Ger 668.
dc.relationLuiz LF, Contrera FAL, Neckel-Oliveira S. (2015). Diet and tadpole transportation in the poison dart frog Ameerega trivittata (Anura, Dendrobatidae). Herpetological Journal, 25, 187-190.
dc.relationMaan ME, Cummings ME. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences, 106, 19072-19077.
dc.relationMaia R, Eliason CM, Bitton P, et al. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecology Evolution, 4, 906-913.
dc.relationMaia R, Gruson H, Endler JA, White TE. (2019). pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecology Evolution, 10, 1097-1107.
dc.relationMartin P. (1986) Recording methods. Measuring behaviour introductory, 48-69.
dc.relationMeuche I, Linsenmair KE, Pröhl H. (2011). Female territoriality in the strawberry poison frog (Oophaga pumilio). Copeia, 2011, 351-356.
dc.relationMyers CW, Daly JW. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin American Museum Natural History,157, 157-177.
dc.relationPortik DM, Bell RC, Blackburn DC, et al. (2019). Sexual dichromatism drives diversification within a major radiation of African amphibians. Systematic Biology, 68, 859-875.
dc.relationPröhl H. (2005). Territorial behavior in dendrobatid frogs. Journal of Herpetology, 39, 354-365.
dc.relationRingler E, Pasukonis A, Hödl W, Ringler M. (2013). Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Frontiers in Zoology, 10, 1-10.
dc.relationRosenqvist G. (1990). Male mate choice and female-female competition for mates in the pipefish Nerophis ophidion. Animal Behavior, 39, 1110-1115.
dc.relationRuxton GD, Allen WL, Sherratt TN, Speed MP. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press.
dc.relationSage M. (1970). Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. Journal Experimental Zoology, 173, 121-127.
dc.relationSilverstone PA. (1975a). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.
dc.relationSilverstone PA. (1975b). Two New Species of Colostethus (Amphibia, Anura, Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County.
dc.relationSilverstone PA. (1976). A revision of the poison-arrow frogs of the genus Phyllobates Bibron in Sagra (Family Dendrobatidae). Natural History, 27, 1-53.
dc.relationSummers K, Tumulty J. (2014). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Sexual selection. Elsevier, 289-320.
dc.relationSztatecsny M, Preininger D, Freudmann A, et al. (2012). Don't get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behavioral Ecology and Sociobiology, 66, 1587-1593.
dc.relationTeam Rs (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020.
dc.relationTwomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. (2020a). A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 29:2004-2015.
dc.relationWells KD. (1980). Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behavioral Ecology and Sociobiology, 6, 199-209.
dc.relationWells KD. (2010). The ecology and behavior of amphibians. University of Chicago Press.
dc.relationWeygoldt P. (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behavioral Ecology and Sociobiology, 7, 329-332.
dc.relationZimmermann H, Zimmermann E. (1980) Durch Nachzucht erhalten: Der Baumsteiger Dendrobates leucomelas. Aquarium Magazine, 14, 211-217.
dc.relationZimmermann H, Zimmermann E. (1981) Sozialverhalten, Fortpflanzungsverhalten und Zucht der Färberfrösche Dendrobates histrionicus und D. lehmanni sowie einiger anderer Dendrobatiden. Zeitschrift des Kölner Zoo, 24, 83-99.
dc.relationAbràmoff MD, Magalhães PJ, Ram SJ. (2004). Image processing with ImageJ. Biophotonics International, 11, 36-42.
dc.relationDell AI, Bender JA, Branson K, Couzin ID, Polavieja G, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U. (2014). Automated image-based tracking and its application in ecology, Trends in Ecology and Evolution, 29, 417-428.
dc.relationBolton Sarah, Dickerson Kelsie, Saporito Ralph. (2017). Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. Journal of Chemical Ecology, 43, 1-17.
dc.relationBooth CL. (1990). Evolutionary significance of ontogenetic colour change in animals. Biological Journal of the Linnean Society, 40, 125-163.
dc.relationCuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Caro T. (2017). The biology of color. Science, 357, 0221.
dc.relationDreher CE, Rodríguez A, Cummings ME, Pröhl H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7, 10503-10512.
dc.relationEndler J, Mappes J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532-547.
dc.relationGonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. (2021). First characterization of toxic alkaloids and volatile organic compounds (V.O.C.s) in the cryptic dendrobatid Silverstoneia punctiventris.Frontiers in Zoology, 18, 1-15.
dc.relationHagman M, Forsman A. (2003). Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Evolution, 57, 2904-2910.
dc.relationHanlon R. (2007). Cephalopod dynamic camouflage. Current biology, 17, R400-R404.
dc.relationMaan ME, Cummings ME. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, E1-E14.
dc.relationMeuche I. (2009). Changes of individual colour patterns in the Central American strawberry poison frog, Oophaga pumilio (Amphibia: Dendrobatidae). Salamandra, 45, 177-179.
dc.relationPalacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 1-10.
dc.relationPérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. (2014). idTracker: tracking individuals in a group by automatically identifying unmarked animals. Methods of Nature, 11, 743-748.
dc.relationRichards-Zawacki CL, Yeager J, Bart HP. (2013). No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evolutionary Ecology, 27, 783- 795.
dc.relationRojas B, Endler, JA. (2013). Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evolutionary Ecology, 27, 739-753.
dc.relationRojas B, Devillechabrolle J, Endler JA. (2014). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. Biology letters, 10, 20140193.
dc.relationRuxton GD, Sherratt TN, Speed MP. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press, Oxford.
dc.relationSantos JC, Cannatella DC. (2011). Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108, 6175-6180.
dc.relationSaporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF. (2010). Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. Journal of Natural Products, 73, 317-321.
dc.relationWang IJ. (2011). Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution, 65, 1637-1649.
dc.relationWang IJ, Shaffer HB. (2008). Rapid color evolution in an aposematic species: A phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution. International Journal of Organic Evolution, 62, 2742-2759.
dc.relationYuan ML, Jung C, Bell RC, Nelson JL. (2022). Aposematic patterns shift continuously throughout the life of poison frogs. Journal of Zoology, 00, 1-8.
dc.relationBagnara JT, Fernandez PJ, Fujii R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20, 14-26.
dc.relationCrothers L, Saporito RA, Yeager J, Lynch K, Friesen C, Richards-Zawacki CL, Cummings M. (2016). Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 30, 601-621.
dc.relationCzeczuga B. (1980). Investigations on carotenoids in Amphibia-II. Carotenoids occurring in various parts of the body of certain species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 65, 623-630.
dc.relationDaly, JW, Myers, CW, Whittaker, N. (1987). Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon, 25, 1023-1095.
dc.relationDaly JW. (1998). The nature and origin of amphibian alkaloids. In The Alkaloids: Chemistry and Biology, 50, 141-169. Academic Press.
dc.relationDaly JW, Spande TF, Garraffo HM. (2005). Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. Journal of Natural Products, 68, 1556-1575.
dc.relationDuShane GP. (1935). An experimental study of the origin of pigment cells in Amphibia. Experimental Zoology, 72, 1-31.
dc.relationFrost S, Robinson SJ. (1984). Pigment cell differentiation in the fire-bellied toad, Bombina orientalis. Journal of Morphology, 179, 229 -242.
dc.relationItoi S. (2013). Larval pufferfish protected by maternal tetrodotoxin. Toxicon, 78, 35-40.
dc.relationKanoh S. (1988). Distribution of tetrodotoxin in vertebrates. Recent Advances in Tetrodotoxin Research, 32-44.
dc.relationKikuchi DW, Pfennig DW. (2012). A Batesian mimic and its model share color production mechanisms. Current Zoology, 58, 658-667.
dc.relationMcGraw KJ. (2006). Mechanics of carotenoid-based coloration. Pages 177-242 in GE. Hill and KJ. McGraw, eds. Bird coloration: mechanisms and measurements. Harvard University Press, Cambridge, MA.
dc.relationMebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G. (2014). Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon, 80, 73-77.
dc.relationMills M, Patterson LB. (2008). Not just black and white: pigment pattern development and evolution in vertebrates. Seminars in Cell and Developmental Biology, 20, 72 - 81.
dc.relationMiyazawa K, Noguchi T. (2001). Distribution and origin of tetrodotoxin. Journal of Toxicology: Toxin Reviews, 20, 11-33.
dc.relationNeuwirth M, Daly JW, Myers CW, Tice LW. (1979). Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue and Cell, 11, 755-771.
dc.relationNoldus LP, Spink AJ, Tegelenbosch RA. (2001). EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, and Computers, 33, 398-414.
dc.relationObika M, Bagnara JT. (1964). Pteridines as pigments in amphibians. Science, 143, 485-487.
dc.relationPosso-Terranova A, Andrés JÁ. (2017). Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution, 71, 2677-2692.
dc.relationPrum RO, Torres R. (2003). Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409-2429.
dc.relationSaenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC. (2013). Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biology, 11, 1-12.
dc.relationSantos, JC, Baquero, M, Barrio-Amorós, C, Coloma, LA, Erdtmann, LK, Lima, AP, Cannatella, DC. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B, 281, 20141761.
dc.relationSantos JC, Tarvin RD, O'Connell LA. (2016). A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, editors. Chemical signals in vertebrates 13. Cham: Springer International Publishing; 2016. 305-37.
dc.relationSaporito RA, Donnelly MA, Spande TF, Garraffo HM. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159-168.
dc.relationSaporito RA, Spande TF, Garraffo HM, Donnelly MA. (2009). Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles, 79, 277-297.
dc.relationSaporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. (2007). Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences, 104, 8885-8890.
dc.relationSaporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia, 2007, 1006-1011.
dc.relationSegami MJ, Rudh A, Rogell B, Odeen A, Lovlie H, Rosher C, Qvarnstrom A. (2017). Cryptic female Strawberry poison frogs experience elevated predation risk when associating with an aposematic partner. Ecology and Evolution, 7, 744-750.
dc.relationShawkey M, d'Alba L. (2017). Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philosopical Transactions of the Royal Society B, 372, 20160536.
dc.relationSilverstone PA. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.
dc.relationShawkey M, Hill G. (2005). Carotenoids need structural colours to shine. Biology Letters, 1, 121- 124.
dc.relationStokes AN, Ducey PK, Neuman-Lee L, Hanifin CT, French SS, Pfrender ME, Brodie Jr ED. (2014). Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS One, 9, e100718.
dc.relationTarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. (2016). Convergent substitutions in a sodium channel suggest multiple origins of toxin resistance in poison frogs. Molecular Biology and Evolution, 33, 1068-1080.
dc.relationTwomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Bocxlaer IV. (2020). Mechanisms for color convergence in a mimetic radiation of poison frogs. The American Naturalist, 195, E132-E149.
dc.relationVaelli P M, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. (2020). The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. Elife, 9, e53898.
dc.relationWilliams BL, Hanifin CT, Brodie ED. (2012). Predators usurp prey defenses? Toxicokinetics of tetrodotoxin in common garter snakes after consumption of rough-skinned newts. Chemoecology, 22, 179-185.
dc.relationYasumoto T, Yotsu-Yamashita M. (1996). Chemical and etiological studies on tetrodotoxin and its analogs. Journal of Toxicology: Toxin Reviews, 15, 81-90.
dc.relationAmézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, Lima A P. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.
dc.relationAndrews RM, Pough FH. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology, 58, 214-231.
dc.relationArbuckle K, Brockhurst, M, Speed MP. (2013). Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 27, 863-881.
dc.relationBorror DJ, Triplehorn A, Johnson NF. (1992). An introduction to the study of insects 6th Ed. New York, Saunders College Publishing.
dc.relationBrusa O, Bellati A, Meuche I, Mundy NI, Pröhl H. (2013). Divergent evolution in the polymorphic granular poison-dart frog, Oophaga granulifera: genetics, coloration, advertisement calls and morphology. Journal of Biogeographic, 40, 394-408.
dc.relationBurton T, Killen SS, Armstrong, JD, Metcalfe NB. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proceedings of the National Academy of Sciences, 278, 3465-3473.
dc.relationDarst CR, Cummings ME, Cannatella DC. (2006a). A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, 103, 5852-5857.
dc.relationDarst CR, Cummings ME. (2006b). Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440, 208-211.
dc.relationEdmunds M. (1974). Defence in Animals: A survey of antipredator defences. Longman, New York.
dc.relationFrappell P, Schultz T, Christian K. (2002). Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. Journal of Experimental Biology, 205, 2725-2736.
dc.relationFernández F. 2003. (ed.). Introducción a las hormigas de la región neotropical. Instituto Alexander von Humboldt, Bogotá, D.C.
dc.relationGermain RM, Hart SP, Turcotte MM, Otto SP, Sakarchi J, Rolland J et al. (2021). On the origin of coexisting species. Trends Ecology and Evolution, 36, 284-293.
dc.relationGordon CE. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198.
dc.relationGrether GF, Peiman KS, Tobias JA, Robinson BW. (2017). Causes and consequences of behavioral interference between species. Trends Ecology and Evolution, 32, 760-772.
dc.relationJohn-Alder HB, Bennett AF. (1981). Thermal dependence of endurance and locomotory energetics in a lizard.American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 241, 342-349.
dc.relationKim SY, Velando A. (2015). Phenotypic integration between antipredator behavior and camouflage pattern in juvenile sticklebacks. Evolution, 69, 830-838.
dc.relationKrebs CJ. (1999). Ecological Methodology. Second edition. Addison.
dc.relationLevins R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University.
dc.relationMappes J, Marples NM, Endler, JA. (2005). The complex business of survival by aposematism. Trends Ecology and Evolution. 20, 598-603.
dc.relationMartin P (1986) Recording methods. Meas Behav Introd Guid 48-69.
dc.relationNespolo RF, Franco M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal Experimental Biology, 210, 2000-2005.
dc.relationPalacios C, Valencia C. (2015). Hábitos tróficos de dos especies sintópicas de carácidos en una quebrada de alta montaña en los Andes colombianos, Revista Mexicana de Biologia, 86, 782-788.
dc.relationPalacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 156-162.
dc.relationPough FH, Taigen TL. (1990). Metabolic correlates of the foraging and social behaviour of dart- poison frogs. Anim Behav 39:145-155.
dc.relationPrudic KL, Oliver JC, Sperling FA. (2007). The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proceedings of the National Academy of Sciences, 104, 19381-19386.
dc.relationRodríguez, C, Amézquita, A, Ringler, M, Pasukonis, A, , Hödl, W. (2020). Calling amplitude flexibility and acoustic spacing in the territorial frog Allobates femoralis. Behavioral Ecology and Sociobiology, 74, 1-10.
dc.relationRichard-Zawacki CL, Wang IJ, Summers K. (2012). Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology, 21, 3879-3892.
dc.relationRuxton GD, Sherratt TN, Speed MP. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.
dc.relationSantos JC, Coloma LA, Cannatella DC. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100, 12792-12797.
dc.relationSpeed MP, Brockhurst MA, Ruxton GD. (2010). The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution, 64, 1622-1633.
dc.relationStevens M, Cuthill IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings Royal Society B, 273, 2141-2147.
dc.relationTaigen TL, Emerson SB, Pough FH. (1982). Ecological correlates of anuran exercisephysiology. Oecologia, 52, 49-56.
dc.relationThayer G H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; Being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.
dc.relationToft CA. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetological, 51, 202-21.
dc.relationWillink B, Brenes-Mora E, Bolaños F, Pröhl H. (2013). Not everything is black and white: color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog. Evolution, 67, 2783-2794.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleOrigin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución