dc.contributor | García Varela, José Alejandro | |
dc.contributor | McIver, Jess | |
dc.contributor | Chan, Man Leong (Mervyn) | |
dc.contributor | Astronomía y astrofísica | |
dc.creator | Álvarez López, María Sofía | |
dc.date.accessioned | 2023-07-25T18:20:57Z | |
dc.date.accessioned | 2023-09-07T00:53:34Z | |
dc.date.available | 2023-07-25T18:20:57Z | |
dc.date.available | 2023-09-07T00:53:34Z | |
dc.date.created | 2023-07-25T18:20:57Z | |
dc.date.issued | 2023-07-12 | |
dc.identifier | http://hdl.handle.net/1992/68738 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727927 | |
dc.description.abstract | A pesar de haber alcanzado sensibilidades capaces de detectar la amplitud extremadamente pequeña de las ondas gravitacionales (GWs), los datos de los detectores LIGO y Virgo contienen frecuentes ráfagas de ruido transitorio no Gaussiano, comúnmente conocidas como "glitches". Los "glitches" se presentan en diversas morfologías de tiempo-frecuencia, y resultan especialmente problemáticos cuando imitan la forma de las GWs reales. Dada la mayor tasa de eventos esperada en el actual periodo de observación de LIGO-Virgo (O4), la validación de los candidatos de eventos de GWs requiere mayores niveles de automatización. Gravity Spy, una herramienta de aprendizaje automático que clasificó con éxito tipos comunes de "glitches" de LIGO y Virgo en observaciones anteriores, tiene el potencial de ser reestructurada como un clasificador de señales de GWs-vs-ruido de detector para distinguir entre "glitches" y señales de GW con precisión. Un clasificador de señales de GWs-vs-"glitches" utilizado para la automatización debe ser robusto y compatible con una amplia gama de ruido de fondo, nuevas fuentes de "glitches" y la probable aparición de "glitches" y GWs solapados en la misma ventana de tiempo. Presentamos GSpyNetTree, el Gravity Spy Convolutional Neural Network Decision Tree: un clasificador multi-etiqueta multi-CNN que utiliza CNNs en un árbol de decisión ordenado a través de la masa total de un evento candidato de onda gravitacional. Integrado en el Informe de Calidad de Datos de LIGO-Virgo (DQR, por sus siglas en inglés), GSpyNetTree es una de las herramientas esenciales en la evaluación de la necesidad de mitigación de "glitches" en O4. Esta tesis presenta el desarrollo de GSpyNetTree, su construcción y resultados, desde su origen como un clasificador multi-clase a su estado actual como clasificador multi-etiqueta. Por último, se evalúa su desempeño en candidatos de ondas gravitacionales del actual periodo de observación, O4, y se proponen técnicas para mejorar su desempeño en futuras iteraciones. | |
dc.description.abstract | Despite achieving sensitivities capable of detecting the extremely small amplitude of gravitational waves (GWs), LIGO and Virgo detector data contain frequent bursts of non-Gaussian transient noise, commonly known as 'glitches'. Glitches come in various time-frequency morphologies, and they are particularly challenging when they mimic the form of real GWs. Given the higher expected event rate in the current observing run (O4), LIGO-Virgo GW event candidate validation requires increased levels of automation. Gravity Spy, a machine learning tool that successfully classified common types of LIGO and Virgo glitches in previous observing runs, has the potential to be restructured as a signal-vs-glitch classifier to distinguish between glitches and GW signals accurately. A signal-vs-glitch classifier used for automation must be robust and compatible with a broad array of background noise, new sources of glitches, and the likely occurrence of overlapping glitches and GWs. This dissertation presents GSpyNetTree, the Gravity Spy Convolutional Neural Network Decision Tree: a multi-CNN multi-label classifier using CNNs in a decision tree sorted via total GW candidate mass. Integrated into the LIGO-Virgo Data Quality Report, GSpyNetTree is one of the essential tools in assessing the necessity of glitch mitigation in O4. This thesis presents the development, building process, and results of GSpyNetTree: from its origin as a multi-class classifier based on Gravity Spy, to its current O4 status as a multi-label classifier. Finally, the performance of GSpyNetTree identifying data quality issues in the public O4 GW candidates published in GraceDB is evaluated, and new ways to improve the tool's classifications are suggested. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Observation of Gravitational Waves from a Binary Black Hole Merger», Phys. Rev. Lett. 116, 061102 (2016). | |
dc.relation | J. McIver and D. H. Shoemaker, «Discovering gravitational waves with advanced ligo»,
Contemporary Physics 61, 229-255 (2020). | |
dc.relation | M. Zevin et al., «Gravity Spy: Integrating Advanced LIGO Detector Characterization,
Machine Learning, and Citizen Science», Classical and Quantum Gravity 34, arXiv:1611.04596
[astro-ph, physics:gr-qc, physics:physics], 064003 (2017). | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw150914:
the advanced ligo detectors in the era of first discoveries», Phys. Rev. Lett. 116, 131103
(2016). | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole
merger GW150914», Physical Review D 95, arXiv:1602.03845 [astro-ph, physics:gr-qc,
physics:physics], 062003 (2017). | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-1:
A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Observing Runs», en, 10.1103/PhysRevX.9.
031040. | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-2:
Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the
Third Observing Run», en, 10.1103/PhysRevX.11.021053. | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration and KAGRA
Collaboration), «GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo
During the Second Part of the Third Observing Run», en, 10.48550/arXiv.2111.03606. | |
dc.relation | J. Harms, «Terrestrial Gravity Fluctuations», Living Reviews in Relativity 22, arXiv:1507.05850
[gr-qc], 6 (2019). | |
dc.relation | The LIGO Scientific Collaboration and the Virgo Collaboration, «Characterization of
transient noise in Advanced LIGO relevant to gravitational wave signal GW150914», Classical and Quantum Gravity 33, arXiv:1602.03844 [astro-ph, physics:gr-qc, physics:physics],
134001 (2016). | |
dc.relation | B. Berger, «Identification and mitigation of advanced ligo noise sources», Journal of
Physics: Conference Series 957, 012004 (2018). | |
dc.relation | D. Davis et al., «LIGO Detector Characterization in the Second and Third Observing
Runs», Classical and Quantum Gravity 38, arXiv:2101.11673 [astro-ph, physics:gr-qc],
135014 (2021) | |
dc.relation | Jarov, S. et al., «A new method to distinguish gravitational-wave signals from detector
glitches with Gravity Spy». | |
dc.relation | S. Alvarez-Lopez et al., GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave
event candidates, 2023. | |
dc.relation | C. Szegedy et al., «Rethinking the inception architecture for computer vision», in 2016
ieee conference on computer vision and pattern recognition (cvpr) (2016), pp. 2818-2826. | |
dc.relation | The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report
user documentation», https : / / docs . ligo . org / detchar / data - quality - report/
(2018). | |
dc.relation | The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report
(DQR) tasks documentation», https://detchar.docs.ligo.org/dqrtasks/index.html (2023). | |
dc.relation | P. R. Saulson, Fundamentals of interferometric gravitational wave detectors (World Scientific, 1994). | |
dc.relation | P. R. Saulson, «Gravitational wave detection: principles and practice», Comptes Rendus
Physique 14, 288-305 (2013). | |
dc.relation | M. Maggiore, Gravitational waves: volume 1: theory and experiments (OUP Oxford, 2007). | |
dc.relation | E. E. Flanagan and S. A. Hughes, «The basics of gravitational wave theory», New Journal
of Physics 7, 204 (2005). | |
dc.relation | K. S. Thorne, J. A. Wheeler, and C. W. Misner, Gravitation (Freeman San Francisco,
CA, 2000). | |
dc.relation | B. S. Sathyaprakash and B. F. Schutz, «Physics, astrophysics and cosmology with gravitational waves», Living reviews in relativity 12, 1-141 (2009). | |
dc.relation | D. J. Griffiths, Introduction to Electrodynamics (Pearson, 2013) | |
dc.relation | S. Carroll, Spacetime and geometry: an introduction to general relativity (Benjamin Cummings, 2003). | |
dc.relation | J. H. Taylor, «Pulsar timing and relativistic gravity», Classical and Quantum Gravity 10, S167 (1993). | |
dc.relation | J. M. Weisberg, D. J. Nice, and J. H. Taylor, «Timing Measurements of the Relativistic
Binary Pulsar PSR B1913+16», Astrophys. J. 722, 1030-1034 (2010). | |
dc.relation | S. Vitale, «The first 5 years of gravitational-wave astrophysics», Science 372, eabc7397
(2021) | |
dc.relation | L. S. Finn and D. F. Chernoff, «Observing binary inspiral in gravitational radiation: One
interferometer», Phys. Rev. D 47, 2198-2219 (1993). | |
dc.relation | L. Blanchet, «Gravitational radiation from post-newtonian sources and inspiralling compact binaries», Living Reviews in Relativity 17, 10.12942/lrr-2014-2 (2014). | |
dc.relation | J. G. Baker et al., «Gravitational-wave extraction from an inspiraling configuration of
merging black holes», Phys. Rev. Lett. 96, 111102 (2006). | |
dc.relation | A. Heger et al., «How Massive Single Stars End Their Life», The Astrophysical Journal
591, 288 (2003). | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Improved
Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model», Phys. Rev. X
6, 041014 (2016). | |
dc.relation | R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw190521:
a binary black hole merger with a total mass of 150 MJ», Phys. Rev. Lett. 125, 101102
(2020). | |
dc.relation | S. A. Hughes, Trust but verify: the case for astrophysical black holes, 2005 | |
dc.relation | R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, «The Australia Telescope
National Facility Pulsar Catalogue», The Astronomical Journal 129, 1993-2006 (2005). | |
dc.relation | L. Rezzolla, E. R. Most, and L. R. Weih, «Using Gravitational-wave Observations and
Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars», The Astrophysical Journal 852, L25, L25 (2018). | |
dc.relation | B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GW170817:
Observation of Gravitational Waves from a Binary Neutron Star Inspiral», Phys. Rev.
Lett. 119, 161101 (2017). | |
dc.relation | B. P. Abbott et al., «Multi-messenger Observations of a Binary Neutron Star Merger»,
The Astrophysical Journal 848, L12 (2017). | |
dc.relation | H.-Y. Chen et al., «Distance measures in gravitational-wave astrophysics and cosmology»,
Classical and Quantum Gravity 38, 055010 (2021). | |
dc.relation | T. M. Tauris et al., «Formation of Double Neutron Star Systems», The Astrophysical
Journal 846, 170 (2017). | |
dc.relation | B. P. Abbott et al., «Gravitational Waves and Gamma-Rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A», The Astrophysical Journal 848, L13 (2017). | |
dc.relation | R. Abbott et al., «Observation of Gravitational Waves from Two Neutron Star Black
Hole Coalescences», The Astrophysical Journal Letters 915, L5 (2021). | |
dc.relation | F. Foucart, «A brief overview of black hole-neutron star mergers», Frontiers in Astronomy
and Space Sciences 7, 10.3389/fspas.2020.00046 (2020). | |
dc.relation | H. Bethe, G. Brown, and C.-H. Lee, «Formation And Evolution Of Black Holes In The
Galaxy», 10.1142/5142 (2003) | |
dc.relation | T. R. Marsh et al., «A radio-pulsing white dwarf binary star», Nature 537, 374-377
(2016). | |
dc.relation | B. Anguiano et al., «White dwarf binaries across the h-r diagram», The Astronomical
Journal 164, 126 (2022). | |
dc.relation | P. Amaro-Seoane et al., Laser Interferometer Space Antenna, 2017. | |
dc.relation | G. Ushomirsky, C. Cutler, and L. Bildsten, «Deformations of accreting neutron star crusts
and gravitational wave emission», Monthly Notices of the Royal Astronomical Society
319, 902-932 (2002). | |
dc.relation | LIGO Scientific Collaboration (LIGO Scientific Collaboration), Introduction to LIGO and
gravitational-waves. | |
dc.relation | V. Morozova, D. Radice, A. Burrows, and D. Vartanyan, «The Gravitational Wave Signal
from Core-collapse Supernovae», The Astrophysical Journal 861, 10 (2018). | |
dc.relation | B. P. Abbott et al., «Search for Transient Gravitational-wave Signals Associated with
Magnetar Bursts during Advanced LIGO's Second Observing Run», The Astrophysical
Journal 874, 163 (2019). | |
dc.relation | B. Kocsis, M. E. Gáspár, and S. Márka, «Detection Rate Estimates of Gravity Waves
Emitted during Parabolic Encounters of Stellar Black Holes in Globular Clusters», The
Astrophysical Journal 648, 411-429 (2006). | |
dc.relation | D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, 2019. | |
dc.relation | M. Maggiore et al., «Science case for the Einstein telescope», Journal of Cosmology and Astroparticle Physics 2020, 050-050 (2020). | |
dc.relation | V. Srivastava et al., «Detection prospects of core-collapse supernovae with supernova-optimized third-generation gravitational-wave detectors», Physical Review D 100, 10.
1103/physrevd.100.043026 (2019). | |
dc.relation | N. Christensen, «Stochastic gravitational wave backgrounds», Reports on Progress in
Physics 82, 016903 (2018). | |
dc.relation | A. Einstein, «Naherungsweise integration der feldgleichungen der gravitation. sitzungsberichte der koniglich preussischen akademie der wissenschaften (berlin)», Translated as Approximative Integration of the Field Equations of Gravitation, in Alfred Engel (translator) and Engelbert Schucking (consultant), The Collected Papers of Albert Einstein 6,1914-1917 (1916). | |
dc.relation | A. Einstein, «On Gravitational Waves», Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.
Phys.), 154 (1918). | |
dc.relation | D. Kennefick, «Controversies in the history of the radiation reaction problem in general
relativity», arXiv preprint gr-qc/9704002 (1997). | |
dc.relation | J. Weber, «Gravitational-wave-detector events», Physical Review Letters 20, 1307 (1968). | |
dc.relation | G. Pizzella, «Birth and initial developments of experiments with resonant detectors
searching for gravitational waves», The European Physical Journal H 41, 267-302 (2016). | |
dc.relation | M. Gertsenshtein, «Wave resonance of light and gravitional waves», Sov Phys JETP 14,
84-85 (1962). | |
dc.relation | G. Moss, L. Miller, and R. Forward, «Photon-noise-limited laser transducer for gravitational antenna», Applied Optics 10, 2495-2498 (1971). | |
dc.relation | R. Weiss and D. Muehlner, Electronically coupled broadband gravitational antenna (Citeseer, 1972). | |
dc.relation | B. F. Schutz, «Networks of gravitational wave detectors and three figures of merit»,
Classical and Quantum Gravity 28, 125023 (2011). | |
dc.relation | J. Abadie et al., «Calibration of the LIGO gravitational wave detectors in the fifth science
run», Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 624, 223-240 (2010). | |
dc.relation | P. Brady, G. Losurdo, and H. Shinkai, «LIGO, VIRGO, and KAGRA as the International
Gravitational Wave Network», in Handbook of Gravitational Wave Astronomy, edited by
C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020),
pp. 1-21. | |
dc.relation | J. Aasi et al., «Advanced LIGO», Classical and Quantum Gravity 32, 074001 (2015). | |
dc.relation | C. L. Mueller et al., «The advanced LIGO input optics», Review of Scientific Instruments
87, 014502, 10.1063/1.4936974 (2016). | |
dc.relation | LIGO Scientific Collaboration (LIGO Scientific Collaboration), LIGO Optics. | |
dc.relation | D. Davis, «Improving the Sensitivity of Advanced LIGO Through Detector Characterization», PhD thesis (Syracuse University, 2019). | |
dc.relation | B. P. Abbott et al., «Prospects for observing and localizing gravitational-wave transients
with Advanced LIGO, Advanced Virgo and KAGRA», Living Reviews in Relativity 23,
10.1007/s41114-020-00026-9 (2020). | |
dc.relation | C. Cahillane and G. Mansell, «Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four», Galaxies 10, 10.3390/galaxies10010036
(2022). | |
dc.relation | D. Davis, L. V. White, and P. R. Saulson, «Utilizing aLIGO glitch classifications to validate gravitational-wave candidates», Classical and Quantum Gravity 37, 145001 (2020). | |
dc.relation | J. G. Rollins, E. Hall, C. Wipf, and L. McCuller, pygwinc: Gravitational Wave Interferometer Noise Calculator, Astrophysics Source Code Library, record ascl:2007.020, July
2020. | |
dc.relation | R. Poggiani, «Gravitational Wave Detectors», in Encyclopedia of Physical Science and
Technology (Third Edition), edited by R. A. Meyers, Third Edition (Academic Press, New
York, 2003), pp. 49-65. | |
dc.relation | LIGO Scientific Collaboration (LIGO Scientific Collaboration), Vibration isolation in LIGO. | |
dc.relation | C. Moore, R. Cole, and C. Berry, Gravitational Wave Sensitivity plotter: Gravitational
Wave Detectors and Sources. | |
dc.relation | B. P. Abbott et al., «Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run», Classical and Quantum Gravity 35,
065010, 065010 (2018). | |
dc.relation | D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022). | |
dc.relation | R. Macas et al., «Impact of noise transients on low latency gravitational-wave event localization», Phys. Rev. D 105, 103021 (2022). | |
dc.relation | J. Powell, «Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches», Classical and Quantum Gravity 35,
155017 (2018). | |
dc.relation | E. Payne et al., «Curious case of GW200129: Interplay between spin-precession inference
and data-quality issues», Phys. Rev. D 106, 104017 (2022). | |
dc.relation | B. Allen, «Chi-squared Time-frequency discriminator for gravitational wave detection», Phys. Rev.
D 71, 062001 (2005). | |
dc.relation | C. M. Biwer et al., «PyCBC Inference: A Python-based Parameter Estimation Toolkit
for Compact Binary Coalescence Signals», Publications of the Astronomical Society of
the Pacific 131, 024503 (2019). | |
dc.relation | M. Cabero et al., «Blip glitches in Advanced LIGO data», Classical and Quantum Gravity
36, 155010 (2019). | |
dc.relation | S. Soni et al., «Discovering features in gravitational-wave data through detector characterization, citizen science, and machine learning», Classical and Quantum Gravity 38, 195016 (2021). | |
dc.relation | D. V. Martynov et al., «Sensitivity of the advanced ligo detectors at the beginning of
gravitational wave astronomy», Phys. Rev. D 93, 112004 (2016). | |
dc.relation | J. Glanzer et al., Noise in the LIGO Livingston Gravitational Wave Observatory due to
Trains, 2023. | |
dc.relation | N. J. Cornish and T. B. Littenberg, «Bayeswave: Bayesian inference for gravitational wave
bursts and instrument glitches», Classical and Quantum Gravity 32, 135012 (2015). | |
dc.relation | D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the
third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022). | |
dc.relation | D. Davis et al., «Improving the sensitivity of Advanced LIGO using noise subtraction»,
Classical and Quantum Gravity 36, 055011 (2019). | |
dc.relation | D. Macleod et al., GWpy: Python package for studying data from gravitational-wave detectors, Astrophysics Source Code Library, record ascl:1912.016, Dec. 2019. | |
dc.relation | S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, «Multiresolution techniques for the detection of gravitational-wave bursts», Classical and Quantum Gravity
21, S1809-S1818 (2004). | |
dc.relation | J. S. Areeda et al., LigoDV-web: Providing easy, secure and universal access to a large
distributed scientific data store for the LIGO Scientific Collaboration, arXiv:1611.01089
[astro-ph, physics:gr-qc], Nov. 2016. | |
dc.relation | The LIGO Scientific Collaboration and The Virgo Collaboration, «LIGO/Virgo Alert
System (LVAlert)» | |
dc.relation | Pace A, Prestegard T, Moe B and Stephens B, «GraceDB Gravitational-Wave Candidate
Event Database», https://gracedb.ligo.org/ (2020). | |
dc.relation | S. Barthelmy et al., «Introducing new GCN Kafka broker and web site for transient alerts,
https://gcn.nasa.gov», GRB Coordinates Network 32419, 1 (2022). | |
dc.relation | A. Geron, Hands-on machine learning with scikit-learn, keras, and tensorflow : 2nd ed.,
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ (O'Reilly
Media, Inc., Mumbai, 2020). | |
dc.relation | A. C. Wilson et al., The marginal value of adaptive gradient methods in machine learning,
2018. | |
dc.relation | D. Masters and C. Luschi, Revisiting small batch training for deep neural networks, 2018. | |
dc.relation | IBM, What are convolutional neural networks? | |
dc.relation | C. Szegedy et al., «Going deeper with convolutions», in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1-9. | |
dc.relation | S. Bahaadini et al., «Machine learning for Gravity Spy: Glitch classification and dataset»,
Information Sciences 444, 172-186 (2018). | |
dc.relation | C. Biwer et al., «Validating gravitational-wave detections: the advanced LIGO hardware
injection system», Physical Review D 95, 10.1103/physrevd.95.062002 (2017). | |
dc.relation | C. Luo et al., «How Does the Data set Affect CNN-based Image Classification Performance?», in 2018 5th International Conference on Systems and Informatics (ICSAI)
(2018), pp. 361-366. | |
dc.relation | LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL), 2018. | |
dc.relation | S. Husa et al., «Frequency-domain gravitational waves from nonprecessing black-hole
binaries. I. New numerical waveforms and anatomy of the signal», Phys. Rev. D 93,
044006 (2016). | |
dc.relation | S. Khan et al., «Frequency-domain gravitational waves from nonprecessing black-hole
binaries. II. A phenomenological model for the advanced detector era», Phys. Rev. D 93,
044007 (2016). | |
dc.relation | K. O'Shea and R. Nash, An Introduction to Convolutional Neural Networks, arXiv:1511.08458
[cs], Dec. 2015. | |
dc.relation | LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration, «GWTC3 Data Release», https://www.gw-openscience.org/GWTC-3/ (2021). | |
dc.relation | D. George, H. Shen, and E. Huerta, «Glitch Classification and Clustering for LIGO with
Deep Transfer Learning», in NiPS Summer School 2017 (Nov. 2017). | |
dc.relation | L. Van der Maaten and G. Hinton, «Visualizing data using t-SNE.», Journal of machine
learning research 9 (2008). | |
dc.relation | D. Thain, T. Tannenbaum, and M. Livny, «Distributed computing in practice: the condor
experience.», Concurrency - Practice and Experience 17, 323-356 (2005). | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run | |
dc.type | Trabajo de grado - Pregrado | |