dc.contributor | Briceño Triana, Juan Carlos | |
dc.contributor | Cruz Jiménez, Juan Carlos | |
dc.contributor | Rodríguez Soto, María Alejandra | |
dc.contributor | Barrera Carvajal, Juan Guillermo | |
dc.contributor | Muñoz Camargo, Carolina | |
dc.contributor | Grupo de Investigación sobre Dinámica Cardiovascular e I+D en Dispositivos Médicos | |
dc.creator | Ayala Velásquez, María de los Ángeles | |
dc.date.accessioned | 2025-08-03 | |
dc.date.accessioned | 2023-09-07T00:52:00Z | |
dc.date.available | 2025-08-03 | |
dc.date.available | 2023-09-07T00:52:00Z | |
dc.date.created | 2025-08-03 | |
dc.date.issued | 2023-08-02 | |
dc.identifier | http://hdl.handle.net/1992/69181 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727893 | |
dc.description.abstract | Los injertos vasculares son dispositivos médicos implantables para la cirugía vascular reconstructiva, en la que un vaso sanguíneo disfuncional se sustituye por un injerto capaz de restablecer su función. Sin embargo, tras su implantación, estos dispositivos pueden presentar algunas complicaciones que generalmente conllevan una elevada tasa de mortalidad y morbilidad, como la infección del injerto vascular. Esta infección está mediada principalmente por bacterias que pueden causar falsos aneurismas, hemorragias e incluso sepsis generalizada. Debido a una tasa de hasta el 40% asociada a la mortalidad de los pacientes que sufren una infección en un injerto aórtico, es necesario pensar en una alternativa que no requiera una segunda intervención, lo cual es especialmente crítico en pacientes con comorbilidades. Por este motivo, es fundamental el diseño de un injerto vascular que suprima la contaminación, proliferación y propagación microbiana en la superficie interna y, asimismo, promueva la endotelización y evite la formación de trombos en el lumen del vaso. El presente estudio tiene como objetivo diseñar y fabricar un injerto vascular antimicrobiano mediante la técnica de electrospinning. Se utilizó poliéster uretano urea (PEUU), un polímero sintético y biodegradable que posee propiedades favorables como material implantable. Para otorgar propiedades bactericidas, el PEUU se funcionalizó con nanoconjugados como nanoplataformas de óxido de grafeno (GO) con nanopartículas de plata (AgNPs) y polietilenglicol (PEG) (GO/PEG-AgNPs), con el fin de prevenir la adhesión de microorganismos y evitar infecciones a largo plazo. Con este enfoque, se espera conseguir una mejora de la calidad de vida de los pacientes que requieren reconstrucción vascular y una disminución significativa de las tasas de mortalidad y morbilidad. | |
dc.description.abstract | Vascular grafts are implantable medical devices for vascular reconstructive surgery, where a dysfunctional blood vessel is replaced by a graft capable of re-establishing its function. However, after implantation, these devices may encounter some complications that generally lead to a high mortality and morbidity rate, such as vascular graft infection. This infection is mainly mediated by bacteria that can cause false aneurysms, bleeding and even generalized sepsis. Due to a rate up to 40% associated with mortality of patients who suffer an infection in an aortic graft, it is necessary to think of an alternative that does not require a second intervention, which is especially critical for patients with comorbidities. For this reason, the design of a vascular graft that suppresses microbial contamination, proliferation and propagation on the internal surface is fundamental and, likewise, promotes endothelialization and prevents thrombus formation in the lumen. The present study aimed to design and fabricate an antimicrobial vascular graft by electrospinning. Polyester urethane urea (PEUU), a synthetic and biodegradable polymer that possesses favorable properties as an implantable material, was used. To confer bactericidal properties, PEUU was functionalized with nanoconjugates such as Graphene Oxide (GO) nanoplatforms with Silver Nanoparticles (AgNPs) and Polyethylene glycol (PEG) (GO/PEG-AgNPs), in order to prevent the adhesion of microorganisms and avoid infections in the long term. With this approach, it is expected to achieve an improvement in the quality of life of patients requiring vascular reconstruction and a significant decrease in mortality and morbidity rates. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | World Health Organization, Cardiovascular diseases. [Online]. Available: https://www.who.int/health-topics/cardiovascular-diseases | |
dc.relation | S. Pashneh-Tala, S. MacNeil, and F. Claeyssens, The tissue- engineered vascular graft-past, present, and future, Tissue Engineering Part B: Reviews, vol. 22, no. 1, 2015. [Online]. Available: https://doi.org/10.1089/ten.teb.2015.0100 | |
dc.relation | Coherent Market Insights, Vascular Graft Market 2019 Global Analyses - by New Development, Business Opportunities, Share Overview, Demand, Regional Demand and Growth Insight to 2026,- 2020. [Online]. Available: https://www.medgadget.com/2020/12/vascular-graft-market-2019-global-analyses-by-new-development-business-opportunities-share-overview-demand-regional-demand-and-growth-insight-to-2026.html | |
dc.relation | W. Wilson, T. Bower, M. Creager, S. Amin-Hanjani, P. O'Gara, P. Lockhart, R. Darouiche, B. Ramlawi, C. Derdeyn, A. Bolger, M. Levison, K. Taubert, R. Baltimore, and L. Baddour, Vascular graft infections, mycotic aneurysms, and endovascular infections: A scientific statement from the american heart association, Circulation, vol. 134, 2016. [Online]. Available: 10.1161/CIR.0000000000000457 | |
dc.relation | C. D. Owens, W. J. Gasper, A. S. Rahman, y M. S. Conte, Vein graft failure, J. Vasc. Surg., vol. 61, n.1, pp. 203-216, 2015 [Online]. Available: 10.1016/j.jvs.2013.08.019. | |
dc.relation | T. J. Takach, P. N. Kane, J. M. Madjarov, J. H. Holleman, F. Robicsek, T. S. Roush, "Endovascular Exclusion of Mycotic Aortic Aneurysm", Tex. Heart Inst. J., vol. 34, n. 4, pp. 459-462, 2007 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2170503/ | |
dc.relation | H. Majeed, F. Ahmad, "Mycotic Aneurysm," Treasure Island (FL): StatPearls Publishing, 2023 [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK560736/ | |
dc.relation | A. Gharamti and Z. Kanafani, Vascular graft infections: An update, Infect Dis Clin North Am, vol. 32, no. 4, pp. 789-809, 2018. [Online]. Available: 10.1016/j.idc.2018.06.003 | |
dc.relation | World Health Organization. (2020) Antibiotic resistance. [Online]. Available: https://www. who.int/news-room/fact-sheets/detail/antibiotic-resistance | |
dc.relation | J. Varino, L. Antunes, C. Mendes, A. Marinho, A. Gonçalves, O. Gonçalves, and A. Matos, Prosthetic vascular graft infections: A center experience, Angiologia e Cirurgia Vascular, vol. 10, pp. 52-57, 2014. [Online]. Available: 10.1016/S1646-706X(14)70050-3 | |
dc.relation | O. Leroy, A. Meybeck, B. Sarraz-Bournet, P. d'Elia, and L. Legout, Vascular graft infections, Curr Opin Infect Dis, pp. 154-158, 2012. [Online]. Available: 10.1097/QCO.0b013e3283501853 | |
dc.relation | M. Revest, F. Camou, E. Senneville, J. Caillon, F. Laurent, B. Calvet, P. Feugier, and M. Batt, Medical treatment of prosthetic vascular graft infections: review of the literature and proposals of a working group, International Journal of Antimicrobial Agents, pp. 254-265, 2015. [Online]. Available: 10.1016/j.ijantimicag.2015.04.014 | |
dc.relation | L. Muñoz, V. Jaramillo, M. Gantiva-Diaz, J. Cifuentes, C. Muñoz Camargo, J. C. Cruz, and A. F. G. Barrios, "Formulation of a novel antibacterial topical treatment based on magnetite-buforin-II- silver nanobioconjugates," Front. Bioeng. Biotechnol, 2022. [Online]. Available: https://doi.org/10.3389/fbioe.2022.1003004 | |
dc.relation | D. Rubio-Olaya, J. Cifuentes, P. Ruiz-Puentes, O. Castañeda, L. H. Reyes, J. Duitama, C. Muñoz, and J. C. Cruz, "Buforin II escherichia coli's DNA interactome: Detailed biophysical characterization revealed nanoscale complexes likely formed by DNA supercoiling," bioRxiv, 2022. [Online]. Available: https://doi.org/10.1101/2022.05.20.492836 | |
dc.relation | J. L. Patarroyo, J. Cifuentes, L. N, Muñoz, J. C. Cruz and L. H. Reyes. Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: formulation, characterization, and preliminary biocompatibility evaluation, Heliyon, 2022. [Online] Available: https://doi.org/10.1016/j.heliyon.2022.e09145 | |
dc.relation | M. Wierzbicki, S. Jaworski, E. Sawosz, A. Jung, G. Gielerak, H. Jaremek, W. lojkowski, B. Wozniak, L. Stobinski, A. Malolepszy, A. Chwalibog. "Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform". Nanoscale Research Letters, 14(1), 2019. [Online] Available: 10.1186/s11671-019-3166-9 | |
dc.relation | E. He, S. Serpelloni, P. Alvear, M. Rahimi and F. Taraballi. Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers, Fibers, 2022. [Online] Available: https://doi.org/10.3390/fib10020012 | |
dc.relation | S. Sydlik, S. Jhunjhunwala, M. Webber, D. Anderson, R. Langer. "In Vivo Compatibility of Graphene Oxide with Differing Oxidation States," ACS Nano, 9(4), 3866-3874, 2015. [Online] Available: 10.1021/acsnano.5b01290 | |
dc.relation | A. Dideikin, A. Vul'. "Graphene Oxide and Derivatives: The Place in Graphene Family," Front. Phys. 6:149, 2019. [Online] Available:10.3389/fphy.2018.00149 | |
dc.relation | Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute, 2018. | |
dc.relation | M. Hamzah, M. Khenfouch, V. Srinivasu. "The quenching of silver nanoparticles photoluminescence by graphene oxide: spectroscopic and morphological investigations,". Journal of Materials Science: Materials in Electronics, 28(2), 1804-1811, 2016. [Online] Available: 10.1007/s10854-016-5729-1 | |
dc.relation | Y. Esmaeili, E. Bidram, A. Zarrabi, A. Amini, C. Cheng. "Graphene oxide and its derivatives as promising In-vitro bio-imaging platforms". Sci Rep 10, 18052, 2020. [Online] Available: https://doi.org/10.1038/s41598-020-75090-w | |
dc.relation | Y. Zhang, Z. Wang, Y. Ji, S. Liu, T. Zhang. "Synthesis of Ag nanoparticle-carbon nanotube reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection," RSC Advances, 5(49), 39037-39041, 2015. [Online] Available: 10.1039/c5ra04246a | |
dc.relation | X. Zhang, Ø. Mikkelsen. "Graphene Oxide/Silver Nanocomposites as Antifouling Coating on Sensor Housing Materials". J Clust Sci 33, 627-635, 2022. [Online] Available: https://doi.org/10.1007/s10876-020-01953-x | |
dc.relation | B. Li, X. Zhang, J. Yang, Y. Zhang, W. Li, C. Fan, Q. Huang. "Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection," Int J Nanomedicine, 8;9:4697-707, 2014. [Online] Available: 10.2147/IJN.S66591. | |
dc.relation | S. Sundaran, C. R. Reshmi, P. Sagitha, A. Sujith. "Polyurethane nanofibrous membranes decorated with reduced graphene oxide-TiO2 for photocatalytic templates in water purification," Journal of Materials Science, 55:5892-5907, 2020. [Online] Available: https://doi.org/10.1007/s10853-020-04414-y | |
dc.relation | R. Hidayat, S. Wahyuningsih, A. Ramelan. "Simple synthesis of rGO (reduced graphene oxide) by thermal reduction of GO (graphene oxide)," IOP Conference Series: Materials Science and Engineering, 858, 012009, 2020. [Online] Available: 10.1088/1757-899x/858/1/012009 | |
dc.relation | N. Bano, I. Hussain, A. M. EL-Naggar, A. A. Albassam. "Reduced graphene oxide nanocomposites for optoelectronics applications," Appl. Phys. A 125, 215, 2019. [Online] Available: https://doi.org/10.1007/s00339-019-2518-8 | |
dc.relation | J.Cifuentes, C. Muñoz-Camargo, J.C. Cruz. "Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential," Nanomaterials, 12, 2857, 2022. [Online] Available: https://doi.org/10.3390/nano12162857 | |
dc.relation | Q. Chen, S. Yu, D. Zhang, W. Zhang, H. Zhang, J. Zou, . . . R. Liu. "Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors," Journal of the American Chemical Society, 2019. [Online] Available: 10.1021/jacs.9b07105 | |
dc.relation | Y. Bian, K. Kim, T. Ngo, I. Kim, O. Bae, K. Lim, J. Chung. "Silver nanoparticles promote procoagulant activity of red blood cells: a potential risk of thrombosis in susceptible population," Part Fibre Toxicol 16, 9, 2019. [Online] Available: https://doi.org/10.1186/s12989-019-0292-6 | |
dc.relation | Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim and J. O. Kim. "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus," Journal of Biomedical Materials Research, 52(4), 662-668, 2000 [Online]. Available: https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | Electrospun PEUU-Based vascular grafts with antimicrobial properties for bacterial infection control | |
dc.type | Trabajo de grado - Maestría | |