dc.contributorHernández Carrión, María
dc.contributorÁlvarez Solano, Óscar Alberto
dc.contributorVillalobos Espinosa, Julieta del Carmen
dc.contributorGrupo de Diseño de Productos y Procesos (GDPP)
dc.creatorRodríguez Cortina, Aureliano
dc.date.accessioned2022-12-12T18:47:02Z
dc.date.accessioned2023-09-07T00:49:18Z
dc.date.available2022-12-12T18:47:02Z
dc.date.available2023-09-07T00:49:18Z
dc.date.created2022-12-12T18:47:02Z
dc.date.issued2022-12-05
dc.identifierhttp://hdl.handle.net/1992/63468
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727826
dc.description.abstractSacha Inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds that are prone to oxidation. This work aimed to obtain SIO microcapsules using high-speed, conventional, and ultrasound probe homogenization and using spray and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. In addition, this work presents a novel approach for the reformulation of muffins with the optimal SIO microcapsules. The texture and color properties of the control muffin and muffins incorporating SIO encapsulates were evaluated. In addition, a sensory analysis of the main attributes of the muffins was obtained by means of a survey. The application of high-speed and ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and the interfacial tension of emulsions, thus enhancing their stability. The microcapsules obtained by both drying technologies had low moisture and water activity values. Spray-dried microcapsules showed higher encapsulation efficiency compared to freeze-dried ones. The thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray drying technology is positioned as a more economical alternative to freeze-drying. The results indicate that the addition of microcapsules of SIO to the muffins helps improve sensory acceptability. This represents an excellent industrial and nutritional alternative for the partial replacement of ingredients for the development of healthier products that contribute to disease prevention.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationAbsolute Reports. (2020). Global Muffins Market. https://www.absolutereports.com/global-muffins-market-15040981
dc.relationAdhikari, B., Howes, T., Wood, B. J., & Bhandari, B. R. (2009). The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. Journal of Food Engineering, 94(2), 135-143. https://doi.org/10.1016/j.jfoodeng.2009.01.022
dc.relationAghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Fish oil microencapsulation as influenced by spray dryer operational variables. International Journal of Food Science & Technology, 48(8), 1707-1713. https://doi.org/10.1111/ijfs.12141
dc.relationAlayón, A. N., Avila, J. G. O., & Jiménez, I. E. (2018). Carbohydrate metabolism and gene expression of sirtuin 1 in healthy subjects after Sacha inchi oil supplementation: A randomized trial. Food & Function, 9(3), 1570-1577. https://doi.org/10.1039/C7FO01956D
dc.relationAlizadeh-Sani, M., Rhim, J.-W., Azizi-Lalabadi, M., Hemmati-Dinarvand, M., & Ehsani, A. (2020). Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. International Journal of Biological Macromolecules, 145, 835-844. https://doi.org/10.1016/j.ijbiomac.2019.11.004
dc.relationAmaya-Cano, J. S., Segura-Pacheco, S., Salcedo-Galán, F., Arenas-Bustos, I., Rincón-Durán, C., & Hernández-Carrión, M. (2021). Formulation of a responsive in vitro digestion wall material, sensory and market analyses for chia seed oil capsules. Journal of Food Engineering, 296, 110460. https://doi.org/10.1016/j.jfoodeng.2020.110460
dc.relationAnandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2010). Spray-freeze-drying of whey proteins at sub-atmospheric pressures. Dairy Science & Technology, 90(2), 321-334. https://doi.org/10.1051/dst/2010013
dc.relationAnio¿owska, M., & Kita, A. (2015). The Effect of Type of Oil and Degree of Degradation on Glycidyl Esters Content During the Frying of French Fries. Journal of the American Oil Chemists¿ Society, 92(11-12), 1621-1631. https://doi.org/10.1007/s11746-015-2715-3
dc.relationAntolín, I., & Meneses, M. (2000). Aplicación de la espectrofotometría UV-visible al estudio de la estabilidad térmica de aceites vegetales comestibles. Grasas y Aceites, 51.
dc.relationAnwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 105(2), 367-378. https://doi.org/10.1016/j.jfoodeng.2011.02.047
dc.relationBenatmane, F., Kouba, M., Youyou, A., & Mourot, J. (2011). Effect of a linseed diet on lipogenesis, fatty acid composition and stearoyl-CoA-desaturase in rabbits. Animal: An International Journal of Animal Bioscience, 5(12), 1993-2000. https://doi.org/10.1017/S1751731111001145
dc.relationBouziane, M., Prost, J., & Belleville, J. (1994). Changes in fatty acid compositions of total serum and lipoprotein particles, in growing rats given protein-deficient diets with either hydrogenated coconut or salmon oils as fat sources. British Journal of Nutrition, 71(3), 375-387. https://doi.org/10.1079/BJN19940145
dc.relationBrummer, R. (Ed.). (2006). Basic Physical and Mathematical Principles. En Rheology Essentials of Cosmetic and Food Emulsions (pp. 25-49). Springer. https://doi.org/10.1007/3-540-29087-7_5
dc.relationCano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420-428. https://doi.org/10.1016/j.ifset.2005.05.003
dc.relationCaparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine Carabao var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
dc.relationCarpenter, J., George, S., & Saharan, V. K. (2018). A comparative study of batch and recirculating flow ultrasonication system for preparation of multilayer olive oil in water emulsion stabilized with whey protein isolate and sodium alginate. Chemical Engineering and Processing - Process Intensification, 125, 139-149. https://doi.org/10.1016/j.cep.2018.01.006
dc.relationCastaño-T, D. L., Valencia-G, M. del P., Murillo-P, E., Mendez-A, J. J., & Eras Joli, J. (2012). Fatty acid composition of inca peanut (plukenetia volúbilis linneo) and its relationship with vegetal bioactivity. Revista chilena de nutrición, 39(1), 45-52. https://doi.org/10.4067/S0717-75182012000100005
dc.relationCastejón, N., Luna, P., & Señoráns, F. J. (2021). Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: Effect on polyunsaturated fatty acid composition. LWT, 148, 111789. https://doi.org/10.1016/j.lwt.2021.111789
dc.relationChasquibol, N. A., del Aguila, C., Yácono, J. C., Guinda, Á., Moreda, W., Gómez-Coca, R. B., & Pérez-Camino, M. C. (2014). Characterization of Glyceridic and Unsaponifiable Compounds of Sacha Inchi ( Plukenetia huayllabambana L.) Oils. Journal of Agricultural and Food Chemistry, 62(41), 10162-10169. https://doi.org/10.1021/jf5028697
dc.relationCheong, A. M., Tan, K. W., Tan, C. P., & Nyam, K. L. (2016). Kenaf (Hibiscus cannabinus L.) seed oil-in-water Pickering nanoemulsions stabilised by mixture of sodium caseinate, Tween 20 and beta-cyclodextrin. Food Hydrocolloids, 52, 934-941. https://doi.org/10.1016/j.foodhyd.2015.09.005
dc.relationChirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013). Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732-1739. https://doi.org/10.1016/j.foodchem.2013.04.078
dc.relationCodex alimentarius 19. (1981). Codex Stan 19 Norma para grasas y aceites comestibles no regulados por normas individuales. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B19-1981%252FCXS_019s.pdf
dc.relationCodex alimentarius210. (1999). Codex Stan 210 Standard for named vegetable oils. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ar/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf
dc.relationda Silva Soares, B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298, 125045. https://doi.org/10.1016/j.foodchem.2019.125045
dc.relationDay, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology, 20(9), 388-395. https://doi.org/10.1016/j.tifs.2008.05.002
dc.relationde Figueiredo Furtado, G., Mantovani, R. A., Consoli, L., Hubinger, M. D., & da Cunha, R. L. (2017). Structural and emulsifying properties of sodium caseinate and lactoferrin influenced by ultrasound process. Food Hydrocolloids, 63, 178-188. https://doi.org/10.1016/j.foodhyd.2016.08.038
dc.relationEl-Messery, T. M., Altuntas, U., Altin, G., & Özçelik, B. (2020). The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocolloids, 106, 105890. https://doi.org/10.1016/j.foodhyd.2020.105890
dc.relationFanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P., & Mondello, L. (2011). Chemical Characterization of Sacha Inchi ( Plukenetia volubilis L.) Oil. Journal of Agricultural and Food Chemistry, 59(24), 13043-13049. https://doi.org/10.1021/jf203184y
dc.relationFeizollahi, E., Hadian, Z., & Honarvar, Z. (2018). Food Fortification with Omega-3 Fatty Acids; Microencapsulation as an Addition Method. Current Nutrition & Food Science, 14(2), 90-103. https://doi.org/10.2174/1573401313666170728151350
dc.relationFernández Segovia, I., García Martínez, E. M., & Fuentes López, A. (2018). Aplicación de las escalas de punto ideal o Just-About-Right (JAR) en análisis sensorial de alimentos. https://riunet.upv.es/handle/10251/104054
dc.relationFerrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470-478. https://doi.org/10.1080/07373937.2012.742103
dc.relationFollegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. The Journal of Supercritical Fluids, 49(3), 323-329. https://doi.org/10.1016/j.supflu.2009.03.010
dc.relationFrança, D., Medina, Â. F., Messa, L. L., Souza, C. F., & Faez, R. (2018). Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable controlled release materials. Carbohydrate Polymers, 196, 47-55. https://doi.org/10.1016/j.carbpol.2018.05.014
dc.relationFranceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197-207. https://doi.org/10.1080/07373937.2013.814664
dc.relationFrascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413-424. https://doi.org/10.1016/j.fbp.2011.12.002
dc.relationGao, J., Brennan, M. A., Mason, S. L., & Brennan, C. S. (2016). Effect of sugar replacement with stevianna and inulin on the texture and predictive glycaemic response of muffins. International Journal of Food Science & Technology, 51(9), 1979-1987. https://doi.org/10.1111/ijfs.13143
dc.relationGonzalez-Aspajo, G., Belkhelfa, H., Haddioui-Hbabi, L., Bourdy, G., & Deharo, E. (2015). Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. Journal of Ethnopharmacology, 171, 330-334. https://doi.org/10.1016/j.jep.2015.06.009
dc.relationGotoh, N., & Wada, S. (2006). The importance of peroxide value in assessing food quality and food safety. Journal of the American Oil Chemists' Society, 83(5), 473-474. https://doi.org/10.1007/s11746-006-1229-4
dc.relationGoula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on product recovery. Journal of Food Engineering, 66(1), 25-34. https://doi.org/10.1016/j.jfoodeng.2004.02.029
dc.relationGoyal, A., Tanwar, B., Kumar Sihag, M., & Sharma, V. (2022). Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry, 373, 131459. https://doi.org/10.1016/j.foodchem.2021.131459
dc.relationGrabowski, J. A., Truong, V.-D., & Daubert, C. R. (2008). Nutritional and rheological characterization of spray dried sweetpotato powder. LWT - Food Science and Technology, 41(2), 206-216. https://doi.org/10.1016/j.lwt.2007.02.019
dc.relationGrigelmo-Miguel, N., Carreras-Boladeras, E., & Martín-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. https://doi.org/10.1106/FLLH-K91M-1G34-Y0EL
dc.relationGuillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., & Pascual, G. (2003). Characterization of sacha inchi (Plukenetia Volubilis L.) oil by FTIR spectroscopy and 1 H-NMR. Comparison with linseed oil. Journal of the American Oil Chemists' Society, 80(8), 755-762. https://doi.org/10.1007/s11746-003-0768-z
dc.relationGutiérrez, L. F., Rosada, L. M., & Jiménez, Á. (2011). Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), Art. 1. https://doi.org/10.3989/gya044510
dc.relationHamaker, B. R., Valles, C., Gilman, R., Hardmeier, R. M., Clark, D., Garcia, H. H., Gonzales, A. E., Kohlstad, I., Castro, M., & Valdivia, R. (1992). Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis). Cereal Chemistry (USA). https://scholar.google.com/scholar_lookup?title=Amino+acid+and+fatty+acid+profiles+of+the+Inca+peanut+%28Plukenetia+volubilis%29&author=Hamaker%2C+B.R.&publication_year=1992
dc.relationHarastani, R., James, L. J., Ghosh, S., Rosenthal, A. J., & Woolley, E. (2021). Reformulation of Muffins Using Inulin and Green Banana Flour: Physical, Sensory, Nutritional and Shelf-Life Properties. Foods, 10(8), Art. 8. https://doi.org/10.3390/foods10081883
dc.relationHernández, E. M. (2013). 11 Enrichment of baked goods with omega-3 fatty acids. En C. Jacobsen, N. S. Nielsen, A. F. Horn, & A.-D. M. Sørensen (Eds.), Food Enrichment with Omega-3 Fatty Acids (pp. 319-335). Woodhead Publishing. https://doi.org/10.1533/9780857098863.3.319
dc.relationHernández-Carrión, M., Hernando, I., & Quiles, A. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Science & Emerging Technologies, 26, 76-85. https://doi.org/10.1016/j.ifset.2014.06.004
dc.relationHuck-Iriart, C., Cardona, J., Avalos, J., & Candal, R. (2014). Gelificación de emulsiones de caseinato de sodio como alternativa a las grasas trans. Ciencia e Investigacion, 64, 5.
dc.relationInternational Crisis Group. (2021). Deeply Rooted: Coca Eradication and Violence in Colombia. Latin American Report No 87. https://www.crisisgroup.org/latin-america-caribbean/andes/colombia/87-deeply-rooted-coca-eradication-and-violence-colombia
dc.relationIqbal, J., & Hussain, M. M. (2009). Intestinal lipid absorption. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1183-E1194. https://doi.org/10.1152/ajpendo.90899.2008
dc.relationJacobsen, C., Let, M. B., Nielsen, N. S., & Meyer, A. S. (2008). Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: A comparative evaluation. Trends in Food Science & Technology, 19(2), 76-93. https://doi.org/10.1016/j.tifs.2007.08.001
dc.relationJafari, S. M. (2017). 1¿An overview of nanoencapsulation techniques and their classification. En S. M. Jafari (Ed.), Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 1-34). Academic Press. https://doi.org/10.1016/B978-0-12-809436-5.00001-X
dc.relationJia, C., Kim, Y. S., Huang, W., & Huang, G. (2008). Sensory and instrumental assessment of Chinese moon cake: Influences of almond flour, maltitol syrup, fat, and gums. Food Research International, 41(9), 930-936. https://doi.org/10.1016/j.foodres.2007.10.006
dc.relationKaltsa, O., Michon, C., Yanniotis, S., & Mandala, I. (2013). Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics Sonochemistry, 20(3), 881-891. https://doi.org/10.1016/j.ultsonch.2012.11.011
dc.relationKarthik, P., & Anandharamakrishnan, C. (2013). Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of its Stability with Spray-Drying and Freeze-Drying Methods. Food and Bioprocess Technology, 6(10), 2780-2790. https://doi.org/10.1007/s11947-012-1024-1
dc.relationKlinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E. A., & McClements, D. J. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Research International, 39(4), 449-457. https://doi.org/10.1016/j.foodres.2005.09.008
dc.relationLi, M., Ma, Y., & Cui, J. (2014). Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT - Food Science and Technology, 59(1), 49-58. https://doi.org/10.1016/j.lwt.2014.04.054
dc.relationLiu, J., Aruguete, D. M., Jinschek, J. R., Donald Rimstidt, J., & Hochella, M. F. (2008). The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochimica et Cosmochimica Acta, 72(24), 5984-5996. https://doi.org/10.1016/j.gca.2008.10.010
dc.relationLiu, Y., Wei, Z.-C., Deng, Y.-Y., Dong, H., Zhang, Y., Tang, X.-J., Li, P., Liu, G., & Zhang, M.-W. (2020). Comparison of the Effects of Different Food-Grade Emulsifiers on the Properties and Stability of a Casein-Maltodextrin-Soybean Oil Compound Emulsion. Molecules, 25(3), Art. 3. https://doi.org/10.3390/molecules25030458
dc.relationMaldonado, L., Latorre, K., Rocha, P., Medrano, A., Abirached, C., & Panizzolo, L. A. (2011). Influencia del pH en la estabilidad de emulsiones elaboradas con proteínas de salvado de arroz. INNOTEC, 6 ene-dic, Art. 6 ene-dic. https://doi.org/10.26461/06.06
dc.relationMarchetti, L., Califano, A. N., & Andrés, S. C. (2018). Partial replacement of wheat flour by pecan nut expeller meal on bakery products. Effect on muffins quality. LWT, 95, 85-91. https://doi.org/10.1016/j.lwt.2018.04.050
dc.relationMcClements, D. J. (2015a). Emulsion Stability. En Food Emulsions (3.a ed.). CRC Press. McClements, D. J. (2015b). Food Emulsions: Principles, Practices, and Techniques, Third Edition (3.a ed.). CRC Press. https://doi.org/10.1201/b18868
dc.relationMinekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Feunteun, S. L., Lesmes, U., Macierzanka, A., Mackie, A., ... Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food an international consensus. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
dc.relationMoayyedi, M., Eskandari, M. H., Rad, A. H. E., Ziaee, E., Khodaparast, M. H. H., & Golmakani, M.-T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods, 40, 391-399. https://doi.org/10.1016/j.jff.2017.11.016
dc.relationMozuraityte, R., Kotsoni, E., Cropotova, J., & Rustad, T. (2021). Low-fat (<50%) oil-in-water emulsions. En P. J. García-Moreno, C. Jacobsen, A.-D. Moltke Sørensen, & B. Yesiltas (Eds.), Omega-3 Delivery Systems (pp. 241-254). Academic Press. https://doi.org/10.1016/B978-0-12-821391-9.00010-7
dc.relationNguyen, H. C., Vuong, D. P., Nguyen, N. T. T., Nguyen, N. P., Su, C.-H., Wang, F.-M., & Juan, H.-Y. (2020). Aqueous enzymatic extraction of polyunsaturated fatty acid-rich sacha inchi (Plukenetia volubilis L.) seed oil: An eco-friendly approach. LWT, 133, 109992. https://doi.org/10.1016/j.lwt.2020.109992
dc.relationNTP 151.400. (2018). Norma Técnica Peruana para Aceite de Sacha Inchi del género Plukenetia. Requisitos.
dc.relationNunes, G. L., Boaventura, B. C. B., Pinto, S. S., Verruck, S., Murakami, F. S., Prudêncio, E. S., & de Mello Castanho Amboni, R. D. (2015). Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, 151, 60-68. https://doi.org/10.1016/j.jfoodeng.2014.10.031
dc.relationNurhadi, B., Andoyo, R., Mahani, & Indiarto, R. (2012). Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal (Malaysia). http://agris.upm.edu.my:8080/dspace/handle/0/12735
dc.relationO¿Brien, R. D. (2012). Fats and Oils: Formulating and Processing for Applications, Third Edition (3.a ed.). CRC Press. https://doi.org/10.1201/9781420061673
dc.relationOh, I. K., & Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796-802. https://doi.org/10.1016/j.foodhyd.2017.11.022
dc.relationPalozza, P., & Krinsky, N. I. (1992). Antioxidant effects of carotenoids in vivo and in vitro: An overview. Methods in Enzymology, 213, 403-420. https://doi.org/10.1016/0076-6879(92)13142-k
dc.relationPaucar-Menacho, L., Salvador Reyes, R., Guillen Sanchez, J. S., Capa-Robles, J., & Moreno Rojo, C. (2015). Comparative study of physical-chemical features of sacha inchi oil (Plukenetia volubilis l.), olive oil (Olea europaea) and fish oil. Scientia agropecuaria, 279-290. https://doi.org/10.17268/sci.agropecu.2015.04.05
dc.relationPereira, A. F. C., Pontes, M. J. C., Neto, F. F. G., Santos, S. R. B., Galvão, R. K. H., & Araújo, M. C. U. (2008). NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection. Food Research International, 41(4), 341-348. https://doi.org/10.1016/j.foodres.2007.12.013
dc.relationPérez, O., Martínez, K., Sánchez, C., & Patino, J. (2017). Strategy for Foaming Improvement of Whey Protein Concentrates by Addition of Hydroxypropylmethylcellulose and Heating: Relation with Interfacial Properties. Nutr Food Technol Open Access, 3(2). http://dx.doi. org/10.16966/2470-6086.141
dc.relationQayum, A., Chen, W., Ma, L., Li, T., Hussain, M., Bilawal, A., Jiang, Z., & Hou, J. (2020). Characterization and comparison of Alpha-lactalbumin pre-and post-emulsion. Journal of Food Engineering, 269, 109743. https://doi.org/10.1016/j.jfoodeng.2019.109743
dc.relationQuispe-Condori, S., Saldaña, M. D. A., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 44(9), 1880-1887. https://doi.org/10.1016/j.lwt.2011.01.005
dc.relationRao, M. A. (2014). Flow and Functional Models for Rheological Properties of Fluid Foods. En M. A. Rao (Ed.), Rheology of Fluid and Semisolid Foods: Principles and Applications (pp. 27-58). Springer US. https://doi.org/10.1007/978-0-387-70930-7_2
dc.relationRatti, C. (2012). Freeze-Drying Process Design. En Handbook of Food Process Design (pp. 621-647). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444398274.ch22
dc.relationRegulation EC No 1989. (2003). Commission regulation (EC) No 1989 Characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis. https://www.legislation.gov.uk/eur/2003/1989/pdfs/eur_20031989_adopted_en.pdf
dc.relationRes. 810. (2021). Resolucion 810 de 2021.
dc.relationRes. 2154. (2012). Resolucion 2154- Ministerio de Salud y Protección Social, Colombia. https://www.icbf.gov.co/cargues/avance/docs/resolucion_minsaludps_2154_2012.htm
dc.relationRezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026
dc.relationRicaurte, L., Hernández-Carrión, M., Moyano-Molano, M., Clavijo-Romero, A., & Quintanilla-Carvajal, M. X. (2018). Physical, thermal and thermodynamical study of high oleic palm oil nanoemulsions. Food Chemistry, 256, 62-70. https://doi.org/10.1016/j.foodchem.2018.02.102
dc.relationRodriguez, A., & Hernández-Carrión, M. (2021). Caracterización físico-química y obtención de emulsiones a partir del aceite de semilla de sacha inchi (pp. 351-364). https://doi.org/10.5281/5513899
dc.relationRubio-Rodríguez, N., Beltrán, S., Jaime, I., de Diego, S. M., Sanz, M. T., & Carballido, J. R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innovative Food Science & Emerging Technologies, 11(1), 1-12. https://doi.org/10.1016/j.ifset.2009.10.006
dc.relationSaikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 171, 144-152. https://doi.org/10.1016/j.foodchem.2014.08.064
dc.relationSalimi, A., Maghsoudlou, Y., & Jafari, S. M. (2018). Effect of emulsion stability and spray drying conditions on physicochemical characteristics of encapsulated powders. Latin American Applied Research - An International Journal, 48(2), Art. 2. https://doi.org/10.52292/j.laar.2018.265
dc.relationSanchez-Reinoso, Z., & Gutiérrez, L.-F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354-1366. https://doi.org/10.1007/s11947-017-1906-3
dc.relationSchmidt, I., Novales, B., Boué, F., & Axelos, M. A. V. (2010). Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. Journal of Colloid and Interface Science, 345(2), 316-324. https://doi.org/10.1016/j.jcis.2010.01.016
dc.relationShahidi, F., & Zhong, Y. (2005). Lipid Oxidation: Measurement Methods. En Bailey's Industrial Oil and Fat Products. John Wiley & Sons, Ltd. https://doi.org/10.1002/047167849X.bio050
dc.relationShevkani, K., Kaur, A., Kumar, S., & Singh, N. (2015). Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology, 63(2), 927-933. https://doi.org/10.1016/j.lwt.2015.04.058
dc.relationShrestha, A. K., Ua-arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass Transition Behavior of Spray Dried Orange Juice Powder Measured by Differential Scanning Calorimetry (DSC) and Thermal Mechanical Compression Test (TMCT). International Journal of Food Properties, 10(3), 661-673. https://doi.org/10.1080/10942910601109218
dc.relationSilva, K. F. C. e, da Silva Carvalho, A. G., Rabelo, R. S., & Hubinger, M. D. (2019). Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. Food and Bioproducts Processing, 116, 118-129. https://doi.org/10.1016/j.fbp.2019.05.001
dc.relationSilva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89-98. https://doi.org/10.1016/j.jfoodeng.2015.07.037
dc.relationSneha, K., & Ashwani, K. (2022). Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innovative Food Science & Emerging Technologies, 76, 102914. https://doi.org/10.1016/j.ifset.2021.102914
dc.relationStratta, L., Capozzi, L. C., Franzino, S., & Pisano, R. (2020). Economic Analysis of a Freeze-Drying Cycle. Processes, 8(11), 1399. https://doi.org/10.3390/pr8111399
dc.relationSuwannasang, S., Zhong, Q., Thumthanaruk, B., Vatanyoopaisarn, S., Uttapap, D., Puttanlek, C., & Rungsardthong, V. (2022). Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. LWT, 161, 113375. https://doi.org/10.1016/j.lwt.2022.113375
dc.relationTasan, M., Gecgel, U., & Demirci, M. (2011). Effects of storage and industrial oilseed extraction methods on the quality and stability characteristics of crude sunflower oil (Helianthus annuus L.). Grasas y Aceites, 62(4), 389-398. https://doi.org/10.3989/gya.126010
dc.relationTeferra, T. F. (2019). Engineering Properties of Food Materials. En M. Kutz (Ed.), Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition) (pp. 45-89). Academic Press. https://doi.org/10.1016/B978-0-12-814803-7.00003-8
dc.relationTeng, M.-J., Wei, Y.-S., Hu, T.-G., Zhang, Y., Feng, K., Zong, M.-H., & Wu, H. (2020). Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. Journal of Food Engineering, 281, 109993. https://doi.org/10.1016/j.jfoodeng.2020.109993
dc.relationTonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950-1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x
dc.relationTontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009
dc.relationVicente, J., de Carvalho, M. G., & Garcia-Rojas, E. E. (2015). Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID. Food Chemistry, 181, 215-221. https://doi.org/10.1016/j.foodchem.2015.02.092
dc.relationViñas-Ospino, A. M. (2020). Caracterización y clasificación quimiométrica de aceites virgenes comercializados en supermercados de Lima Metropolitana. http://repositorio.lamolina.edu.pe/handle/20.500.12996/4477
dc.relationWang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi ( Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chemistry, 265, 316-328. https://doi.org/10.1016/j.foodchem.2018.05.055
dc.relationWen, P., Zong, M.-H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology, 70, 56-68. https://doi.org/10.1016/j.tifs.2017.10.009
dc.relationWillnecker, A., & Pramparo, M. C. (2009). Study on jojoba oil hydrogenation. Grasas y Aceites, 60(1), Art. 1. https://doi.org/10.3989/gya.032708
dc.relationYamashita, Y., Miyahara, R., & Sakamoto, K. (2017). Emulsion and Emulsification Technology. En K. Sakamoto, R. Y. Lochhead, H. I. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology (pp. 489-506). Elsevier. https://doi.org/10.1016/B978-0-12-802005-0.00028-8
dc.relationYang, F., Yang, J., Qiu, S., Xu, W., & Wang, Y. (2021). Tannic acid enhanced the physical and oxidative stability of chitin particles stabilized oil in water emulsion. Food Chemistry, 346, 128762. https://doi.org/10.1016/j.foodchem.2020.128762
dc.relationZahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. https://doi.org/10.1111/j.1365-2621.2010.02444.x
dc.relationZhou, L., Zhang, J., Xing, L., & Zhang, W. (2021). Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science & Technology, 110, 493-512. https://doi.org/10.1016/j.tifs.2021.02.008
dc.relationZhou, L., Zhang, W., Wang, J., Zhang, R., & Zhang, J. (2022). Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrasonics Sonochemistry, 82, 105885. https://doi.org/10.1016/j.ultsonch.2021.105885
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSacha Inchi seed oil encapsulation as a strategy for the development of new functional foods
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución