dc.contributor | Junca Peláez, Mauricio José | |
dc.contributor | Hoegele, Michael Anton | |
dc.contributor | Hernandez, Camilo | |
dc.creator | Contreras Quiroz, Carlos Daniel | |
dc.date.accessioned | 2023-08-03T20:21:48Z | |
dc.date.accessioned | 2023-09-07T00:46:34Z | |
dc.date.available | 2023-08-03T20:21:48Z | |
dc.date.available | 2023-09-07T00:46:34Z | |
dc.date.created | 2023-08-03T20:21:48Z | |
dc.date.issued | 2023-07-02 | |
dc.identifier | http://hdl.handle.net/1992/69198 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727782 | |
dc.description.abstract | In this work we study numerical methods for partial differential equations in high dimensions using approximations with neural networks. We apply those methods to solve optimal control problems and N-agent games problems. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Matemáticas | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Deep learning methods for high dimensional PDEs | |
dc.type | Trabajo de grado - Maestría | |