dc.contributorCelis Ramírez, Adriana Marcela
dc.contributorVives Flórez, Martha Josefina
dc.contributorGrupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP)
dc.contributorCentro de Investigaciones Microbiológicas (CIMIC)
dc.creatorPedraza Martínez, María Andrea
dc.date.accessioned2024-05-01
dc.date.accessioned2023-09-07T00:46:01Z
dc.date.available2024-05-01
dc.date.available2023-09-07T00:46:01Z
dc.date.created2024-05-01
dc.date.issued2023-08-04
dc.identifierhttp://hdl.handle.net/1992/69254
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727763
dc.description.abstractCarbapenem resistance in Klebsiella pneumoniae is mainly associated with the production of KPC. KPC-producing K. pneumoniae (KPC-Kp) represents an urgent threat to global public health given the limited antibiotic therapies available to treat nosocomial infections caused by these strains. Given that Colombia is a KPC endemic country, efforts must be made to monitor and understand the molecular mechanisms involved in blaKPC dissemination. In this study, 73 carbapenem-resistant K. pneumoniae (CRKP) isolates were collected and identified from blood cultures of 28 patients at Hospital Universitario Mayor - Méderi in Bogotá between 2022 and 2023. The blaKPC gene variants were amplified by conventional PCR and identified by capillary sequencing. Clonal relationships among CRKP isolates were determined by Repetitive Extragenic Palindromic PCR (REP-PCR). Molecular typing showed 89.0% of CRKP isolates carrying the blaKPC gene. The blaKPC-3 variant had the highest incidence (78.1%), followed by blaKPC-2 (11.0%). In total, 22 REP-PCR clones were identified, of which 13 were clusters, 9 were singletons and 4 were found circulating between ICU and hospitalization. These findings provide insightful information for therapeutic management guidelines and contribute to local and national KPC surveillance.
dc.description.abstractLa resistencia a carbapenémicos en Klebsiella pneumoniae se asocia principalmente a la producción de KPC. K. pneumoniae productora de KPC (KPC-Kp) representa una amenaza urgente para la salud pública mundial dadas las limitadas terapias antibióticas disponibles para tratar las infecciones nosocomiales causadas por estas cepas. Dado que Colombia es un país endémico para KPC, se deben hacer esfuerzos para monitorear y entender los mecanismos moleculares involucrados en la diseminación de blaKPC. En este estudio, se recolectaron e identificaron 73 aislamientos de K. pneumoniae resistente a carbapenémicos (CRKP) a partir de hemocultivos de 28 pacientes del Hospital Universitario Mayor - Méderi de Bogotá entre 2022 y 2023. Las variantes del gen blaKPC se amplificaron por PCR convencional y se identificaron por secuenciación capilar. Las relaciones clonales entre los aislamientos se determinaron por amplificación de secuencias palindrómicas extragénicas repetitivas (REP-PCR). La tipificación molecular mostró que el 89,0% de los aislamientos CRKP eran portadores del gen blaKPC. La variante blaKPC-3 tuvo la mayor incidencia (78,1%), seguida de blaKPC-2 (11,0%). En total, se identificaron 22 clones REP-PCR, de los cuales 13 eran grupos, 9 eran únicos y 4 se encontraron circulando entre los ambientes de hospitalización y UCI. Estos hallazgos proporcionan información útil para las guías de manejo terapéutico del hospital y contribuyen a la vigilancia local y nacional de KPC.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMicrobiología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAbril, D., Vergara, E., Palacios, D., Leal, A. L., Marquez-Ortiz, R. A., Madroñero, J., Corredor Rozo, Z. L., De La Rosa, Z., Nieto, C. A., Vanegas, N., Cortés, J. A., & Escobar-Perez, J. (2021). Within patient genetic diversity of blaKPC harboring Klebsiella pneumoniae in a Colombian hospital and identification of a new NTEKPC platform. Scientific Reports, 11(21409), 1-16. https://doi.org/10.1038/s41598-021-00887-2
dc.relationBeltrán Toca, L. M. (2020). Costo económico de las bacteriemias causadas por enterobacterias resistentes a carbapenémicos en una institución de Bogotá [Master's Thesis, Universidad Nacional de Colombia]. Universidad Nacional de Colombia's Repository. https://repositorio.unal.edu.co/bitstream/handle/unal/78690/1019068120.2020.pdf?sequence=1&isAllowed=y
dc.relationBengoechea, J. A., & Pessoa, J. S. (2019). Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Reviews, 43(2), 123-144. https://doi.org/10.1093/femsre/fuy043
dc.relationBradford, P. A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D., Rahal, J. J., Brooks, S., Cebular, S., & Quale, J. (2004). Emergence of Carbapenem-Resistant Klebsiella Species Possessing the Class A Carbapenem-Hydrolyzing KPC-2 and Inhibitor-Resistant TEM-30 beta-Lactamases in New York City. Clinical Infectious Diseases, 39(1), 55-60. https://doi.org/10.1086/421495
dc.relationBustos-Moya, G., Josa-Montero, D., Perea-Ronco, J., Gualtero-Trujillo, S., Ortiz-Aroca, J., Novoa-Bernal, Á., Arias-León, G., Silva-Monsalve, E., Buitrago-Bernal, R., & Poveda-Henao, M. (2016). Factores relacionados con el control exitoso de un brote por Klebsiella pneumoniae productora de KPC-2 en una unidad de cuidado intensivo en Bogotá, Colombia. Infectio, 20(1), 25-32. https://doi.org/10.1016/j.infect.2015.07.001
dc.relationCampos, A. C., Albiero, J., Ecker, A. B., Kuroda, C. M., Meirelles, L. E. F., Polato, A., Tognim, M. C. B., Wingeter, M. A., & Teixeira, J. J. V. (2016). Outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: A systematic review. American Journal of Infection Control, 44(11), 1374-1380. https://doi.org/10.1016/j.ajic.2016.03.022
dc.relationCenteleghe, I., Norville, P., Hughes, L., & Maillard, J.-Y. (2023). Klebsiella pneumoniae survives on surfaces as a dry biofilm. American Journal of Infection Control. https://doi.org/10.1016/j.ajic.2023.02.009
dc.relationCheng, S., Fleres, G., Chen, L., Liu, G., Hao, B., Newbrough, A., Driscoll, E., Shields, R. K., Squires, K. M., Chu, T., Kreiswirth, B. N., Nguyen, M. H., & Clancy, C. J. (2022). Within-Host Genotypic and Phenotypic Diversity of Contemporaneous Carbapenem-Resistant Klebsiella pneumoniae from Blood Cultures of Patients with Bacteremia. MBio, 13(6). https://doi.org/10.1128/mbio.02906-22
dc.relationCheruvanky, A., Stoesser, N., Sheppard, A. E., Crook, D. W., Hoffman, P. S., Weddle, E., Carroll, J., Sifri, C. D., Chai, W., Barry, K., Ramakrishnan, G., & Mathers, A. J. (2017). Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel Tn4401 Deletion. Antimicrobial Agents and Chemotherapy, 61(6), e0002517. https://doi.org/10.1128/AAC.00025-17
dc.relationClegg, S., & Murphy, C. N. (2016). Epidemiology and Virulence of Klebsiella pneumoniae. Microbiology Spectrum, 4(1). https://doi.org/10.1128/microbiolspec.UTI-0005-2012
dc.relationCruz-Vargas, S. A., García-Muñoz, L., Cuervo-Maldonado, S. I., Álvarez-Moreno, C. A., Saavedra-Trujillo, C. H., Álvarez-Rodríguez, J. C., Arango-Gutiérrez, A., Gómez-Rincón, J. C., García-Guzman, K., Leal, A. L., Garzón-Herazo, J., Martínez-Vernaza, S., Guevara, F. O., Jiménez-Cetina, L. P., Mora, L. M., Saavedra, S. Y., & Cortés, J. A. (2023). Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms, 11(2), 359. https://doi.org/10.3390/microorganisms11020359
dc.relationDe La Cadena, E., Mojica, M. F., García-Betancur, J. C., Appel, T. M., Porras, J., Pallares, C. J., Solano-Gutiérrez, J. S., Rojas, L. J., & Villegas, M. V. (2021). Molecular Analysis of Polymyxin Resistance among Carbapenemase-Producing Klebsiella pneumoniae in Colombia. Antibiotics, 10(3), 284. https://doi.org/10.3390/antibiotics10030284
dc.relationDoorduijn, D. J., Rooijakkers, S. H. M., van Schaik, W., & Bardoel, B. W. (2016). Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology, 221(10), 1102-1109. https://doi.org/10.1016/j.imbio.2016.06.014
dc.relationFalco Restrepo, A. D., Velásquez Nieves, M. A., & Takiff, H. (2017). Molecular characterization of KPC-producing Klebsiella pneumoniae isolated from patients in a Public Hospital in Caracas, Venezuela. Enfermedades Infecciosas y Microbiología Clínica, 35(7), 411-416. https://doi.org/10.1016/j.eimc.2017.01.010
dc.relationFernández Cuenca, F., López Cerero, L., & Pascual Hernández, Á. (2013). Técnicas de tipificación molecular para la vigilancia y control de la infección. Enfermedades Infecciosas y Microbiología Clínica, 31(1), 20-25. https://doi.org/10.1016/S0213-005X(13)70110-1
dc.relationGrupo para el control de la Resistencia Bacteriana de Bogotá. (2023, March 26). Boletín número 12: Resultados de la vigilancia de la resistencia bacteriana año 2019-2021 Componente pediátrico y adulto. https://www.grupogrebo.org/wp-content/uploads/2023/03/Boletin-12-2.pdf
dc.relationGutiérrez-Gutiérrez, B., & Rodríguez-Baño, J. (2019). Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clinical Microbiology and Infection, 25(8), 932-942. https://doi.org/10.1016/j.cmi.2019.03.030
dc.relationHendrickx, A. P. A., Landman, F., de Haan, A., Borst, D., Witteveen, S., van Santen-Verheuvel, M. G., van der Heide, H. G. J., Schouls, L. M., Halaby, T., Steingrover, R., Cohen Stuart, J. W. T., Melles, D. C., van Dijk, K., Spijkerman, I. J. B., Notermans, D. W., Oudbier, J. H., van Ogtrop, M. L., van Dam, A., den Reijer, M., ... Paltansing, S. (2020). Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance. Scientific Reports, 10(16778). https://doi.org/10.1038/s41598-020-73440-2
dc.relationHeras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2015). GelJ - a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics, 16(270). https://doi.org/10.1186/s12859-015-0703-0
dc.relationHobson, C. A., Pierrat, G., Tenaillon, O., Bonacorsi, S., Bercot, B., Jaouen, E., Jacquier, H., & Birgy, A. (2022). Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrobial Agents and Chemotherapy, 66(9). https://doi.org/10.1128/aac.00447-22
dc.relationInstituto Nacional de Salud. (2021, June 9). Vigilancia por laboratorio de resistencia antimicrobiana en IAAS en Colombia, año 2016 a 2020. https://www.ins.gov.co/BibliotecaDigital/vigilancia-por-laboratorio-de-resistencia-antimicrobiana-en-iaas-en-colombia-a%C3%B1o-2016-a-2020.pdf
dc.relationJun, J.-B. (2018). Klebsiella pneumoniae Liver Abscess. Infection & Chemotherapy, 50(3), 210. https://doi.org/10.3947/ic.2018.50.3.210
dc.relationJung, H.-J., Littmann, E. R., Seok, R., Leiner, I. M., Taur, Y., Peled, J., van den Brink, M., Ling, L., Chen, L., Kreiswirth, B. N., Goodman, A. L., & Pamer, E. G. (2019). Genome-Wide Screening for Enteric Colonization Factors in Carbapenem-Resistant ST258 Klebsiella pneumoniae. MBio, 10(2), e02663-18. https://doi.org/10.1128/mBio.02663-18
dc.relationKhan, A., Faheem, M., Danishuddin, M., & Khan, A. U. (2014). Evaluation of Inhibitory Action of Novel Non beta-Lactam Inhibitor against Klebsiella pneumoniae Carbapenemase (KPC-2). PLoS ONE, 9(9), e108246. https://doi.org/10.1371/journal.pone.0108246
dc.relationKrause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: An Overview. Cold Spring Harbor Perspectives in Medicine, 6(6), a027029. https://doi.org/10.1101/cshperspect.a027029
dc.relationLi, J., Bi, W., Dong, G., Zhang, Y., Wu, Q., Dong, T., Cao, J., & Zhou, T. (2020). The new perspective of old antibiotic: In vitro antibacterial activity of TMP-SMZ against Klebsiella pneumoniae. Journal of Microbiology, Immunology and Infection, 53(5), 757-765. https://doi.org/10.1016/j.jmii.2018.12.013
dc.relationLopez, J. A., Correa, A., Navon-Venezia, S., Correa, A. L., Torres, J. A., Briceño, D. F., Montealegre, M. C., Quinn, J. P., Carmeli, Y., & Villegasz, M. V. (2011). Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clinical Microbiology and Infection, 17(1), 52-56. https://doi.org/10.1111/j.1469-0691.2010.03209.x
dc.relationLópez-Ramírez, K. L., Díaz-Maldonado, K. C., Vergara Espinoza, M. A., Santamaría-Veliz, O., Serquén-López, L. M., Canelo Olinda, B., León-Jimenez, F. E., & Aguilar-Gamboa, F.-R. (2018). Patrón de clonalidad mediante ERIC-PCR y REP-PCR de Escherichia coli y Klebsiella pneumoniae productores de betalactamasas de espectro extendido, aisladas de pacientes con infección urinaria intrahospitalaria. Hospital Regional Lambayeque, Perú. Horizonte Médico (Lima), 18(2), 11-18. https://doi.org/10.24265/horizmed.2018.v18n2.03
dc.relationMartin, R. M., & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8. https://doi.org/10.3389/fcimb.2018.00004
dc.relationMigliorini, L. B., de Sales, R. O., Koga, P. C. M., Doi, A. M., Poehlein, A., Toniolo, A. R., Menezes, F. G., Martino, M. D. V., Gales, A. C., Brüggemann, H., & Severino, P. (2021). Prevalence of blaKPC-2, blaKPC-3 and blaKPC-30-Carrying Plasmids in Klebsiella pneumoniae Isolated in a Brazilian Hospital. Pathogens, 10(3), 332. https://doi.org/10.3390/pathogens10030332
dc.relationMoya, C., & Maicas, S. (2020). Antimicrobial Resistance in Klebsiella pneumoniae Strains: Mechanisms and Outbreaks. The 1st International Electronic Conference on Microbiology, 11. https://doi.org/10.3390/proceedings2020066011
dc.relationNaas, T., Oueslati, S., Bonnin, R. A., Dabos, M. L., Zavala, A., Dortet, L., Retailleau, P., & Iorga, B. I. (2017). Beta-lactamase database (BLDB) - structure and function. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 917-919. https://doi.org/10.1080/14756366.2017.1344235
dc.relationNoster, J., Thelen, P., & Hamprecht, A. (2021). Detection of Multidrug-Resistant Enterobacterales-From ESBLs to Carbapenemases. Antibiotics, 10(9), 1140. https://doi.org/10.3390/antibiotics10091140
dc.relationOcampo, A. M., Chen, L., Cienfuegos, A. V., Roncancio, G., Chavda, K. D., Kreiswirth, B. N., & Jiménez, J. N. (2016). A Two-Year Surveillance in Five Colombian Tertiary Care Hospitals Reveals High Frequency of Non-CG258 Clones of Carbapenem-Resistant Klebsiella pneumoniae with Distinct Clinical Characteristics. Antimicrobial Agents and Chemotherapy, 60(1), 332-342. https://doi.org/10.1128/AAC.01775-15
dc.relationPaczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiology and Molecular Biology Reviews, 80(3), 629-661. https://doi.org/10.1128/MMBR.00078-15
dc.relationPan American Health Organization. (2021, October 22). Epidemiological Alert: Emergence and increase of new combinations of carbapenemases in Enterobacterales in Latin America and the Caribbean - 22 October 2021. https://www.paho.org/en/documents/epidemiological-alert-emergence-and-increase-new-combinations-carbapenemases
dc.relationPana, Z. D., & Zaoutis, T. (2018). Treatment of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLs) infections: what have we learned until now? F1000Research, 7(1347), 1-9. https://doi.org/10.12688/f1000research.14822.1
dc.relationPicão, R. C., Jones, R. N., Mendes, R. E., & Castanheira, M. (2013). Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae Testing Susceptible to Cefepime by Reference Methods. Journal of Clinical Microbiology, 51(7), 2388-2390. https://doi.org/10.1128/JCM.00640-13
dc.relationRada, A. M., De La Cadena, E., Agudelo, C., Capataz, C., Orozco, N., Pallares, C., Dinh, A. Q., Panesso, D., Ríos, R., Diaz, L., Correa, A., Hanson, B. M., Villegas, M. V., Arias, C. A., & Restrepo, E. (2020). Dynamics of blaKPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrobial Agents and Chemotherapy, 64(12). https://doi.org/10.1128/AAC.01743-20
dc.relationRemolina G., S. A., Conde M., C. E., Escobar C., J. C., Leal C., A. L., Bravo O., J. S., Saavedra R., S. Y., Rosa N., Z. R. de la, Sánchez F., N., Santana G., A. Y., Cortés C., S., Acosta R., E., Quintero B., L. A., López C., M. del P., & Saavedra T., C. H. (2021). Tipos de carbapenemasas expresadas en Klebsiella spp., y Pseudomonas aeruginosa resistente a carbapenémicos en seis hospitales de alta complejidad de la Ciudad de Bogotá - Colombia. Revista Chilena de Infectología, 38(5), 720-723. https://doi.org/10.4067/s0716-10182021000500720
dc.relationRendueles, O. (2020). Deciphering the role of the capsule of Klebsiella pneumoniae during pathogenesis: A cautionary tale. Molecular Microbiology, 113(5), 883-888. https://doi.org/10.1111/mmi.14474
dc.relationRimoldi, S. G., Gentile, B., Pagani, C., Di Gregorio, A., Anselmo, A., Palozzi, A. M., Fortunato, A., Pittiglio, V., Ridolfo, A. L., Gismondo, M. R., Rizzardini, G., & Lista, F. (2017). Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014. BMC Infectious Diseases, 17(666). https://doi.org/10.1186/s12879-017-2760-7
dc.relationRodríguez, E. C. (2014). Caracterización genética de aislamientos de Klebsiella pneumoniae, resistentes a carbapenémicos, remitidos al grupo de resistencia bacteriana de Bogotá GREBO por hospitales del distrito, en un periodo de 3 años [Master's Thesis, Universidad Nacional de Colombia]. Universidad Nacional de Colombia's Repository. https://repositorio.unal.edu.co/bitstream/handle/unal/74994/1186729.2014.pdf?sequence=1&isAllowed=y
dc.relationRojas, L. J., Weinstock, G. M., De La Cadena, E., Diaz, L., Rios, R., Hanson, B. M., Brown, J. S., Vats, P., Phillips, D. S., Nguyen, H., Hujer, K. M., Correa, A., Adams, M. D., Perez, F., Sodergren, E., Narechania, A., Planet, P. J., Villegas, M. V, Bonomo, R. A., & Arias, C. A. (2018). An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the "Perfect Storm." The Journal of Infectious Diseases, 217(1), 82-92. https://doi.org/10.1093/infdis/jix524
dc.relationRuiz del Castillo, B., Vinué, L., Román, E. J., Guerra, B., Carattoli, A., Torres, C., & Martínez-Martínez, L. (2013). Molecular characterization of multiresistant Escherichia coli producing or not extended-spectrum beta-lactamases. BMC Microbiology, 13(1), 84. https://doi.org/10.1186/1471-2180-13-84
dc.relationSaavedra, S. Y., Bernal, J. F., Montilla-Escudero, E., Arévalo, S. A., Prada, D. A., Valencia, M. F., Moreno, J., Hidalgo, A. M., García-Vega, Á. S., Abrudan, M., Argimón, S., Kekre, M., Underwood, A., Aanensen, D. M., Duarte, C., Donado-Godoy, P., Abudahab, K., Harste, H., Muddyman, D., ... Vegvari, C. (2021). Complexity of Genomic Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clinical Infectious Diseases, 73(Supplement_4), S290-S299. https://doi.org/10.1093/cid/ciab777
dc.relationSnitkin, E. S., Won, S., Pirani, A., Lapp, Z., Weinstein, R. A., Lolans, K., & Hayden, M. K. (2017). Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak. Science Translational Medicine, 9(417). https://doi.org/10.1126/scitranslmed.aan0093
dc.relationTenover, F. C., Arbeit, R. D., Goering, R. V, Mickelsen, P. A., Murray, B. E., Persing, D. H., & Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33(9), 2233-2239. https://doi.org/10.1128/jcm.33.9.2233-2239.1995
dc.relationTobes, R., & Pareja, E. (2006). Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics, 7(62). https://doi.org/10.1186/1471-2164-7-62
dc.relationVásquez-Ponce, F., Dantas, K., Becerra, J., Melocco, G., Esposito, F., Cardoso, B., Rodrigues, L., Lima, K., de Lima, A. V., Sellera, F. P., Mattos, R., Trevisoli, L., Vianello, M. A., Sincero, T., Di Conza, J., Vespero, E., Gutkind, G., Sampaio, J., & Lincopan, N. (2022). Detecting KPC-2 and NDM-1 Coexpression in Klebsiella pneumoniae Complex from Human and Animal Hosts in South America. Microbiology Spectrum, 10(5). https://doi.org/10.1128/spectrum.01159-22
dc.relationVázquez-Ucha, J. C., Arca-Suárez, J., Bou, G., & Beceiro, A. (2020). New Carbapenemase Inhibitors: Clearing the Way for the beta-Lactams. International Journal of Molecular Sciences, 21(23), 9308. https://doi.org/10.3390/ijms21239308
dc.relationVera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., Lima, C., Aguayo-Reyes, A., Domínguez, M., Bello-Toledo, H., & González-Rocha, G. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Revista Chilena de Infectología, 34(5), 476-484. https://doi.org/10.4067/S0716-10182017000500476
dc.relationVersalovic, J., Koeuth, T., & Lupski, R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Research, 19(24), 6823-6831. https://doi.org/10.1093/nar/19.24.6823
dc.relationVirginia Villegas, M., Lolans, K., Correa, A., Jose Suarez, C., Lopez, J. A., Vallejo, M., & Quinn, J. P. (2006). First Detection of the Plasmid-Mediated Class A Carbapenemase KPC-2 in Clinical Isolates of Klebsiella pneumoniae from South America. Antimicrobial Agents and Chemotherapy, 50(8), 2880-2882. https://doi.org/10.1128/AAC.00186-06
dc.relationVrancianu, C. O., Gheorghe, I., Dobre, E.-G., Barbu, I. C., Cristian, R. E., Popa, M., Lee, S. H., Limban, C., Vlad, I. M., & Chifiriuc, M. C. (2020). Emerging Strategies to Combat beta-Lactamase Producing ESKAPE Pathogens. International Journal of Molecular Sciences, 21(22), 8527. https://doi.org/10.3390/ijms21228527
dc.relationWyres, K. L., Lam, M. M. C., & Holt, K. E. (2020). Population genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, 18(6), 344-359. https://doi.org/10.1038/s41579-019-0315-1
dc.relationXu, M., Fu, Y., Kong, H., Chen, X., Chen, Y., Li, L., & Yang, Q. (2018). Bloodstream infections caused by Klebsiella pneumoniae: prevalence of blaKPC, virulence factors and their impacts on clinical outcome. BMC Infectious Diseases, 18(358), 1-9. https://doi.org/10.1186/s12879-018-3263-x
dc.relationZhang, S., Yang, Z., Sun, L., Wang, Z., Sun, L., Xu, J., Zeng, L., & Sun, T. (2020). Clinical Observation and Prognostic Analysis of Patients With Klebsiella pneumoniae Bloodstream Infection. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.577244
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleMolecular typing of KPC variants and clonality assessment of carbapenem-resistant Klebsiella pneumoniae isolates obtained from blood cultures of hospitalized and ICU-admitted patients at the Hospital Universitario Mayor - Méderi in Bogotá D.C.
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución