dc.contributorLinares Vásquez, Mario
dc.contributorDonoso Meisel, Yezid Enrique
dc.contributorJimenez Barrera, Cristian
dc.contributorGrupo de Tecnologías de Información y Construcción de Software TICSw
dc.creatorBarreto Reyes, Camilo Enrique
dc.date.accessioned2023-12-31
dc.date.accessioned2023-09-07T00:44:41Z
dc.date.available2023-12-31
dc.date.available2023-09-07T00:44:41Z
dc.date.created2023-12-31
dc.date.issued2023-06-06
dc.identifierhttp://hdl.handle.net/1992/69120
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727724
dc.description.abstractEncontrar un modelo computacional eficiente para la evaluación de amenazas en buques de guerra suele ser una tarea compleja y de limitado estudio en general, sin embargo, la tarea puede verse aún más complicada al concebir un modelo para embarcaciones navales de capacidad limitada como lo son los buques de patrulla oceánica que en muchas de las ocasiones solo cuentan con un solo radar de vigilancia en dos dimensiones para contactos de superficie. El propósito de este proyecto es el desarrollar un modelo computacional que satisfaga este problema revisando para ello el estado del arte en el desarrollo de estas tecnologías, comparando modelos y algoritmos usados en trabajos anteriores, utilizando como fuente de entrada la información de un radar de vigilancia 2D y analizando la información cinética detectada de otros contactos presentes en el área de operación, comparando diferentes tipos de implementación y encontrando a través de la evaluación de los resultados obtenidos, las conclusiones más acertadas que permitan integrar este modelo a un sistema de soporte a la decisión militar de desarrollo nacional en un futuro cercano.
dc.description.abstractFinding an efficient computational model for threat assessment for warships is usually a complex task and of limited study in general, however, the task can be even more complicated when conceiving a model for naval vessels of limited capacity such as ocean patrol vessels, which in many cases only have a single two-dimensional surveillance radar for surface contacts. The purpose of this project is to develop a computational model that satisfies this problem by reviewing the state of the art in the development of these technologies, comparing models and algorithms used in previous works, using as input source information of a 2D surveillance radar and analyzing the kinetic information detected from other contacts present in operational , comparing different types of implementation and finding through the evaluation of the results obtained, the most accurate conclusions that allow integrating this model to a military decision support system of national development in the near future.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationAzak, M., & Bayrak, A. E. (2008, October). A New Approach for Threat Evaluation and Weapon Assignment Problem, Hybrid Learning with Multi-Agent Coordination. 23rd International Symposium on Computer and Information Sciences. https://doi.org/10.1109
dc.relationBenaskeur, A. R., Kabanza, F., Beaudry, E., & Beaudoin, M. (2008). A Probabilistic Planner for the Combat Power Management Problem. www.aaai.org
dc.relationBenavoli, A., Ristic, B., Farina, A., Oxenham, M., & Chisci, L. (2007). An Approach to Threat Assessment Based on Evidential Networks. 10th International Conference on Information Fusion, 1-8. https://doi.org/10.1109
dc.relationBlasco Jimenez, G. (2015). Modelos gráficos probabilísticos en sistemas distribuidos [Tesis]. Universidad de Barcelona.
dc.relationBox, G. E. P., & Tiao, G. C. (2011). Bayesian inference in statistical analysis. John Wiley & Sons.
dc.relationBrodley, C. E., & Smyth, P. (1997). Applying classification algorithms in practice. Statics and Computing, 7(1), 45-56.
dc.relationBureau Veritas. (2022). Rules for the classification of naval ships.
dc.relationCentro Internacional de Investigación y Análisis Contra Narcotráfico Marítimo. (2020). Dinámica de Narcotráfico Marítimo 2019.
dc.relationÇöçelli, M., & Arkin, E. (2017, February 9). A threat evaluation model for small-scale naval platforms with limited capability. 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016. https://doi.org/10.1109/SSCI.2016.7850075
dc.relationÇöçelli, M., & Arkn, E. (2017). A Category Based Threat Evaluation Model Using Platform Kinematics Data. Advances in Science, Technology and Engineering Systems Journal, 2(3). www.astesj.com
dc.relationCristina, F., Dargam, C., Lopes Passos, E. P., Da, F., & Pantoja, R. (1991). Decision Support Systems for military applications. In European Journal of Operational Research (Vol. 55).
dc.relationDong, A. X., & Qing, L. G. (1999). Application of Neural Network in the Field of Target Threat Evaluation. IJCNN´99 International Joint Conference on Neural Networks, 1-4.
dc.relationEom, S., & Kim, E. (2006). A survey of decision support system applications (1995-2001). In Journal of the Operational Research Society (Vol. 57, Issue 11, pp. 1264-1278). Palgrave Macmillan Ltd. https://doi.org/10.1057/palgrave.jors.2602140
dc.relationEscuela Superior de Guerra de Colombia. (2019). Manual de Guerra de Superficie unidades tipo Fragata FS-1500.
dc.relationFenton, N., & Neil, M. (2019). Risk Assessment and Decision Analysis with Bayesian Networks, Second Edition (CRC Press). Taylor & Francis Group.
dc.relationHang, F., Xie, L., Zhang, Z., Guo, W., & Li, H. (2022). Artificial intelligence enabled fuzzy multimode decision support system for cyber threat security defense automation. Journal of Computer Virology and Hacking Techniques. https://doi.org/10.1007/s11416-022-00443-0
dc.relationIrandoust, H., Benaskeur, A., Kabanza, F., & Bellefeuille, P. (2010). A mixed-initiative advisory system for threat evaluation. Decision Support Systems for C2 Section, Defence R&D Canada. https://www.researchgate.net/publication/228731840
dc.relationJames L. George. (1998). History of Warships, from ancient times to the twenty-first century (Naval Institute Press, Ed.; 1st ed., Vol. 1).
dc.relationJohansson, F. (2010). Evaluating the Performance of TEWA Systems (Örebro University). Örebro University. www.publications.oru.se
dc.relationJohansson, F., & Falkman, G. (2008). A Bayesian network approach to threat evaluation with application to an air defense scenario. Proceedings of the 11th International Conference on Information Fusion, FUSION 2008. https://doi.org/10.1109/ICIF.2008.4632368
dc.relationKalloniatis, A. C., McLennan-Smith, T. A., & Roberts, D. O. (2020). Modelling distributed decision-making in Command and Control using stochastic network synchronisation. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.12.033
dc.relationLehmann, N. (2001). Argumentation Systems and Belief Functions.
dc.relationLiang, Y. (2007). An Approximate Reasoning Model for Situation and Threat Assessment. In IEEE Computer Society (Ed.), 4th INternational Conference on Fuzzy Systems and Knowledge Discovery.
dc.relationLiebhaber D A Kobus, M. J., & Feher SSC San Diego, B. A. (2002). Studies of U.S. Navy Cues, Information Order, and Impact of Conflicting Data. http://www.spawar.navy.mil/sti/publications/pubs/index.html
dc.relationLiebhaber, M. J., & Feher, B. (2002a). Air Threat Assessment: Research, Model, and Display Guidelines.
dc.relationLiebhaber, M. J., & Feher, B. A. (2002b). Surface Warfare Threat Assessment: Requirements Definition. http://www.spawar.navy.mil/sti/publications/pubs/index.html
dc.relationLiebhaber, M. J., Kobus, D. A., & Feher, B. A. (2002). Studies of U.S. Navy Cues, Information Order, and Impact of Conflicting Data. http://www.spawar.navy.mil/sti/publications/pubs/index.html
dc.relationLiebhaber, M. J., & Smith, C. A. P. (2000). Naval Air Defense Threat Assessment: Cognitive Factors and Model. Space and Naval Warfare Systems Center.
dc.relationNaeem, H., & Masood, A. (2010). An optimal dynamic threat evaluation and weapon scheduling technique. Knowledge-Based Systems, 23(4), 337-342. https://doi.org/10.1016/j.knosys.2009.11.012
dc.relationNamgung, H., & Kim, J. S. (2021). Collision Risk Inference System for Maritime Autonomous Surface Ships Using COLREGs Rules Compliant Collision Avoidance. IEEE Access, 9, 7823-7835. https://doi.org/10.1109/ACCESS.2021.3049238
dc.relationOkello, N., & Thoms, G. (2003). Threat assessment using Bayesian networks. Proceedings of the 6th International Conference on Information Fusion, FUSION 2003, 2, 1102-1109. https://doi.org/10.1109/ICIF.2003.177361
dc.relationParadis, S., Benaskeur, A., Oxenham, M., & Cutler, P. (2005). Threat evaluation and weapons allocation in network-centric warfare. 2005 7th International Conference on Information Fusion, FUSION, 2, 1078-1085. https://doi.org/10.1109/ICIF.2005.1591977
dc.relationP.K., G., & Kumar, V. (2011). Radar Visibility Diagram for site selection. Int. Radar Symp. India. https://www.researchgate.net/publication/235697476
dc.relationRiveiro, M., Helldin, T., Lebram, M., & Falkman, G. (2013, July 9). Towards future threat evaluation systems: user study, proposal and precepts for design. 16th International Conference on Information Fusion.
dc.relationRiveiro, M., Lebram, M., & Warston, H. (2014). On visualizing threat evaluation configuration processes: a design proposal.
dc.relationRochlin, G. I. (1991). IRAN AIR FLIGHT 655 AND THE USS VINCENNES Complex, Large-Scale Military Systems and the Failure of Control.
dc.relationRoux, J. N., & Van Vuuren, J. H. (2007). Threat evaluation and weapon assignment decision support: A review of the state of the art. Orion, 23(2), 151-187. http://www.orssa.org.za
dc.relationSerbedzija, N. B. (1996). Simulating artificial neural networks on parallel architectures. IEEE Computer Society, 56-63. https://doi.org/10.1109/2
dc.relationSteinberg, A. N. (2017). Foundations of situation and threat assessment. In Handbook of multisensor data fusion (pp. 457-522). CRC Press.
dc.relationSteinberg, A. N., & Bowman, C. L. (2004). Rethinking the JDL data fusion levels. Nssdf Jhapl, 38, 39.
dc.relationStimson, G. W. (1998). Airbone Radar (2nd ed.). Scitech publishing inc.
dc.relationTERMA. (2006). SCANTER Track Management Protocol.
dc.relationZha, X. F., & Sriram, R. D. (2007). Knowledge-intensive Collaborative Decision Support for Design Process. In Intelligent Decision-making Support Systems (pp. 301-320). Springer London. https://doi.org/10.1007/1-84628-231-4_16
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleImplementación de un modelo computacional para la evaluación de amenazas de superficie en embarcaciones navales de capacidades limitadas usando información de radar
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución