dc.contributorAlvarez Solano, Oscar Alberto
dc.contributorGonzález Barrios, Andrés Fernando
dc.contributorGrupo de Diseño de Productos y Procesos
dc.creatorSolarte Rodríguez, Sebastián
dc.date.accessioned2023-06-30T18:18:20Z
dc.date.accessioned2023-09-07T00:44:34Z
dc.date.available2023-06-30T18:18:20Z
dc.date.available2023-09-07T00:44:34Z
dc.date.created2023-06-30T18:18:20Z
dc.date.issued2023-05-29
dc.identifierhttp://hdl.handle.net/1992/68035
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727720
dc.description.abstractActualmente, la enfermedad de Alzheimer (EA) es la causa más común de demencia en pacientes de la tercera edad dada su naturaleza neurodegenerativa. Es por esto, que distintos tratamientos se han diseñado con el fin de manejar los síntomas de esta enfermedad. En este trabajo se estudiará la formulación y manufactura formas farmacéuticas orales a base de Galantamina, un medicamento extraído de la familia de plantas Amaryllidaceae la cual se ha venido usando ampliamente para el tratamiento sintomático de la EA. Se inicia por el entendimiento de su funcionamiento y metabolismo, hasta la propuesta de su composición y fabricación a escala laboratorio para su posterior implementación a nivel industrial siguiendo la aproximación de "Quality by Design" (QbD) y el diseño integrado de procesos y productos (DIPP). Para lograr esto, se plantean dos formas farmacéuticas como tabletas y emulsiones en las cuales se evaluará la incidencia de variables de formulación y proceso en respuestas fisicoquímicas y cinéticas de los sistemas formulados.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationS. Sharma, Sustainable Agriculture Reviews 43, in Sustainable Agriculture Reviews 43: Pharmaceutical Technology for Natural Products Delivery Vol. 1 Fundamentals and Applications, A. Saneja, A. K. Panda, and E. Lichtfouse, Eds., 1st ed.in Sustainable Agriculture Reviews, vol. 43. Cham: Springer International Publishing, 2020, pp. 131-159. doi: 10.1007/978-3-030-41838-0.
dc.relationV. Zarotsky, J. J. Sramek, and N. R. Cutler, Galantamine hydrobromide: An agent for Alzheimer's disease, American Journal of Health-System Pharmacy, vol. 60, no. 5, 2003, doi: 10.1093/ajhp/60.5.446.
dc.relationM. E. Hasselmo and J. M. Bower, Acetylcholine and memory, Trends in Neurosciences, vol. 16, no. 6. pp. 218-222, 1993. doi: 10.1016/0166-2236(93)90159-J.
dc.relationH. Dvir, I. Silman, M. Harel, T. L. Rosenberry, and J. L. Sussman, Acetylcholinesterase: From 3D structure to function, Chem Biol Interact, vol. 187, no. 1-3, pp. 10-22, 2010, doi: 10.1016/j.cbi.2010.01.042.
dc.relationH. Hampel et al., Revisiting the Cholinergic Hypothesis in Alzheimer's Disease: Emerging Evidence from Translational and Clinical Research, J Prev Alzheimers Dis, vol. 6, no. 1, pp. 2-15, 2019, doi: 10.14283/jpad.2018.43.
dc.relationL. J. Scott and K. L. Goa, Galantamine: A review of its use in Alzheimer's disease, Drugs, vol. 60, no. 5, pp. 1095-1122, 2000, doi: 10.2165/00003495-200060050-00008.
dc.relationU. N. Khatavkar, S. L. Shimpi, K. J. Kumar, and K. D. Deo, Development and in vivo evaluation of novel monolithic controlled release compositions of galantamine hydrobromide as against reservoir technology, Pharm Dev Technol, vol. 18, no. 5, pp. 1148-1158, 2013, doi: 10.3109/10837450.2011.595799.
dc.relationM. Noetzli and C. B. Eap, Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of alzheimer's disease, Clin Pharmacokinet, vol. 52, no. 4, pp. 225-241, 2013, doi: 10.1007/s40262-013-0038-9.
dc.relationL. Z. Benet and P. Zia-Amirhosseini, Basic principles of pharmacokinetics, Toxicol Pathol, vol. 23, no. 2, pp. 115-123, 1995, doi: 10.1177/019262339502300203.
dc.relationS. Lilienfeld, Galantamine - A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease, CNS Drug Rev, vol. 8, no. 2, pp. 159-176, 2002, doi: 10.1111/j.1527-3458.2002.tb00221.x.
dc.relationG. S. J. Mannens et al., The metabolism and excretion of galantamine in rats, dogs, and humans, Drug Metabolism and Disposition, vol. 30, no. 5, pp. 553-563, 2002, doi: 10.1124/dmd.30.5.553.
dc.relationA. Talevi and L. Bellera, Drug Metabolism, in ADME Processes in Pharmaceutical Sciences Dosage, Design, and Pharmacotherapy Success, Cham: Springer, 2018, pp. 55-80. doi: https://doi.org/10.1007/978-3-319-99593-9_4.
dc.relationV. I. Turiiski, A. D. Krustev, V. N. Sirakov, and D. P. Getova, In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract, Eur J Pharmacol, vol. 498, no. 1-3, pp. 233-239, 2004, doi: 10.1016/j.ejphar.2004.07.054.
dc.relationM. Koziolek et al., Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap® System, J Pharm Sci, vol. 104, no. 9, pp. 2855-2863, 2015.
dc.relationM. Bogda, Tablet Compression: Machine Theory, Design, and Process Troubleshooting, in Encyclopedia of Pharmaceutical Technology, J. Swarbrick, Ed., Third.Pinehurst: Informa Healthcare, 2007, pp. 3611-3629.
dc.relationN. A. Armstrong, Tablet Manufacture, in Encyclopedia of Pharmaceutical Technology, J. Swarbrick, Ed., Third.New York: Informa Healthcare, 2007, pp. 3653-3672.
dc.relationN. Armstrong, Tablet Manufacture by Direct Compression, in Encyclopedia of Pharmaceutical Technology, J. Swarbrick, Ed., Third.Pinehurst: Informa Healthcare, 2007, pp. 3673-3683. doi: DOI: 10.1081/E-EPT-120003785.
dc.relationA. A. Somani et al., Evaluation of changes in oral drug absorption in preterm and term neonates for Biopharmaceutics Classification System (BCS) class i and II compounds, Br J Clin Pharmacol, vol. 81, no. 1, pp. 137-147, 2016, doi: 10.1111/bcp.12752.
dc.relationP. Koblová, H. Sklenárová, I. Brabcová, and P. Solich, Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column, Analytical Methods, vol. 4, no. 6, 2012, doi: 10.1039/c2ay05784k.
dc.relationB. Yohannes and A. Abebe, Determination of tensile strength of shaped tablets, Powder Technol, vol. 383, pp. 11-18, 2021, doi: 10.1016/j.powtec.2021.01.014.
dc.relationS. M. Razavi, M. Gonzalez, and A. M. Cuitiño, General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression, Int J Pharm, vol. 484, no. 1-2, pp. 29-37, 2015, doi: 10.1016/j.ijpharm.2015.02.030.
dc.relationF. Podczeck, K. R. Drake, and J. M. Newton, Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology, Int J Pharm, vol. 454, no. 1, pp. 412-424, 2013, doi: 10.1016/j.ijpharm.2013.06.069.
dc.relationC. Shang, I. C. Sinka, B. Jayaraman, and J. Pan, Break force and tensile strength relationships for curved faced tablets subject to diametrical compression, Int J Pharm, vol. 442, no. 1-2, pp. 57-64, 2013, doi: 10.1016/j.ijpharm.2012.09.005.
dc.relationK. G. Pitt, J. M. Newton, R. Richardson, and P. Stanley, The Material Tensile Strength of Convex-faced Aspirin Tablets, Journal of Pharmacy and Pharmacology, vol. 41, no. 5, pp. 289-292, 1989, doi: 10.1111/j.2042-7158.1989.tb06458.x.
dc.relationC. Nyström, G. Alderborn, M. Duberg, and P. G. Karehill, Bonding surface area and bonding mechanism-two important factors fir the understanding of powder comparability, Drug Dev Ind Pharm, vol. 19, no. 17-18, pp. 2143-2196, 1993, doi: 10.3109/03639049309047189.
dc.relationP. Bawuah, T. Ervasti, N. Tan, J. A. Zeitler, J. Ketolainen, and K. E. Peiponen, Noninvasive porosity measurement of biconvex tablets using terahertz pulses, Int J Pharm, vol. 509, no. 1-2, pp. 439-443, 2016, doi: 10.1016/j.ijpharm.2016.06.023.
dc.relationI. J. Hardy, W. G. Cook, and C. D. Melia, Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier, Int J Pharm, vol. 311, no. 1-2, pp. 26-32, 2006, doi: 10.1016/j.ijpharm.2005.12.025.
dc.relationR. M. Pabari and Z. Ramtoola, Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets, Int J Pharm, vol. 430, no. 1-2, pp. 18-25, Jul. 2012, doi: 10.1016/j.ijpharm.2012.03.021.
dc.relationM. Chaheen, B. Bataille, A. Yassine, E. Belamie, and T. Sharkawi, Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties, J Pharm Sci, vol. 108, no. 10, pp. 3319-3328, 2019, doi: 10.1016/j.xphs.2019.05.021.
dc.relationV. P. Shah, Y. Tsong, P. Sathe, and J. P. Liu, In vitro dissolution profile comparison- Statistics and analysis of the similarity factor, f2, Pharm Res, vol. 15, no. 6, pp. 889-896, 1998, doi: 10.1023/A:1011976615750.
dc.relationJ. Vijay, J. Sahadevan, R. Prabhakaran, and R. Gilhotra, Formulation and evaluation of cephalexin extended-release matrix tablets using hydroxy propyl methyl cellulose as rate-controlling polymer, Journal of Young Pharmacists, vol. 4, no. 1, pp. 3-12, 2012, doi: 10.4103/0975-1483.93570.
dc.relationD. Zhou et al., Understanding and managing the impact of HPMC variability on drug release from controlled release formulations, J Pharm Sci, vol. 103, no. 6, pp. 1664-1672, 2014, doi: 10.1002/jps.23953.
dc.relationD. Palmer, M. Levina, A. Nokhodchi, D. Douroumis, T. Farrell, and A. Rajabi-Siahboomi, The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices, AAPS PharmSciTech, vol. 12, no. 3, pp. 862-871, 2011, doi: 10.1208/s12249-011-9648-4.
dc.relationS. Tiwari, J. DiNunzio, and A. Rajabi-Siahboomi, Drug-Polymer Matrices for Extended Release, in Controlled Release in Oral Drug Delivery, W. Clive G and P. Crowley J, Eds., 1st ed.New York: Springer, 2011, pp. 131-159. doi: DOI 10.1007/978-1-4614-1004-1_7.
dc.relationUnited States Pharmacopeia, Galantamina, Cápsulas de Liberación Prolongada, 2020.
dc.relationB. Lundberg, Preparation of drug-carrier emulsions stabilized with phosphatidylcholine-surfactant mixtures, J Pharm Sci, vol. 83, no. 1, pp. 72-75, 1994, doi: 10.1002/jps.2600830117.
dc.relationH. Carrstensen, R. H. Müller, and B. W. Müller, Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake, Clinical Nutrition, vol. 11, no. 5, pp. 289-297, 1992, doi: 10.1016/0261-5614(92)90006-C.
dc.relationF. Leal-Calderon, J. Bibette, and V. Schmitt, Emulsion science: Basic principles, 2nd ed. New York: Springer New York, 2007. doi: 10.1007/978-0-387-39683-5.
dc.relationJ. P. Gallo-Molina, N. Ratkovich, and Ó. Álvarez, Multiscale Analysis of Water-in-Oil Emulsions: A Computational Fluid Dynamics Approach, Ind Eng Chem Res, vol. 56, no. 27, pp. 7757-7767, 2017, doi: 10.1021/acs.iecr.7b02246.
dc.relationL. Zhou, J. Zhang, L. Xing, and W. Zhang, Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review, Trends Food Sci Technol, vol. 110, pp. 493-512, 2021, doi: 10.1016/j.tifs.2021.02.008.
dc.relationK. M. B. Jansen, W. G. M. Agterof, and J. Mellema, Droplet breakup in concentrated emulsions, J Rheol (N Y N Y), vol. 45, no. 1, pp. 227-236, 2001, doi: 10.1122/1.1333001.
dc.relationG. W. Lu and P. Gao, Emulsions and Microemulsións for Topical and Transdermal Drug Delivery, in Handbook of Non-Invasive Drug Delivery Systems, 2010, pp. 59-94. doi: 10.1016/b978-0-8155-2025-2.10003-4.
dc.relationC. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr Opin Colloid Interface Sci, vol. 10, no. 3-4, pp. 102-110, 2005, doi: 10.1016/j.cocis.2005.06.004.
dc.relationT. H. Nikam, M. P. Patil, S. S. Patil, G. P. Vadnere, and S. Lodhi, Nanoemulsion: A brief review on development and application in Parenteral Drug Delivery, Advance Pharmaceutical Journal, vol. 3, no. 2, pp. 43-54, 2018, doi: 10.31024/apj.2018.3.2.2.
dc.relationS. N. Kale and S. L. Deore, Emulsion micro emulsion and nano emulsion: A review, Systematic Reviews in Pharmacy, vol. 8, no. 1. pp. 39-47, 2016. doi: 10.5530/srp.2017.1.8.
dc.relationS. Talegaonkar, A. Azeem, F. Ahmad, R. Khar, S. Pathan, and Z. Khan, Microemulsións: A Novel Approach to Enhanced Drug Delivery, Recent Pat Drug Deliv Formul, vol. 2, no. 3, pp. 238-257, 2008, doi: 10.2174/187221108786241679.
dc.relationL. Hu, Y. Jia, F. Niu, Z. Jia, X. Yang, and K. Jiao, Preparation and enhancement of oral bioavailability of curcumin using microemulsións vehicle, J Agric Food Chem, vol. 60, no. 29, pp. 7137-7141, 2012, doi: 10.1021/jf204078t.
dc.relationA. Yaqoob Khan, S. Talegaonkar, Z. Iqbal, F. Jalees Ahmed, and R. Krishan Khar, Multiple Emulsions: An Overview, Curr Drug Deliv, vol. 3, no. 4, pp. 429-443, 2006, doi: 10.2174/156720106778559056.
dc.relationW. Liu, X. L. Yang, and W. S. Winston Ho, Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification, Journal of Pharmaceutical Sciences, vol. 100, no. 1. pp. 75-93, 2011. doi: 10.1002/jps.22272.
dc.relationS. Sugiura et al., Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification, J Colloid Interface Sci, vol. 270, no. 1, pp. 221-228, 2004, doi: 10.1016/j.jcis.2003.08.021.
dc.relationJ. M. Morais, P. A. Rocha-Filho, and D. J. Burgess, Influence of phase inversion on the formation and stability of one-step multiple emulsions, Langmuir, vol. 25, no. 14, pp. 7954-7961, 2009, doi: 10.1021/la9007125.
dc.relationG. T. Vladisavljevic, M. Shimizu, and T. Nakashima, Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification, J Memb Sci, vol. 244, no. 1-2, pp. 97-106, 2004, doi: 10.1016/j.memsci.2004.07.008.
dc.relationS. Ding, C. A. Serra, T. F. Vandamme, W. Yu, and N. Anton, Double emulsions prepared by two-step emulsification: History, state-of-the-art and perspective, Journal of Controlled Release, vol. 295. pp. 31-49, 2019. doi: 10.1016/j.jconrel.2018.12.037.
dc.relationM. L. Chen and L. Yu, The use of drug metabolism for prediction of intestinal permeability, Mol Pharm, vol. 6, no. 1, pp. 74-81, 2009, doi: 10.1021/mp8001864.
dc.relationG. F. Gonzales and C. Gonzales, A randomized, double-blind placebo-controlled study on acceptability, safety and efficacy of oral administration of sacha inchi oil (Plukenetia volubilis L.) in adult human subjects, Food and Chemical Toxicology, vol. 65, pp. 168-176, 2014, doi: 10.1016/j.fct.2013.12.039.
dc.relationD. Sugasini, P. C. R. Yalagala, A. Goggin, L. M. Tai, and P. V. Subbaiah, Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol, Journal of Nutritional Biochemistry, vol. 74, 2019, doi: 10.1016/j.jnutbio.2019.108231.
dc.relationX. Song, J. Wang, S. Li, and Y. Wang, Formation of sacha inchi oil microemulsión systems: effects of non-ionic surfactants, short-chain alcohols, straight-chain esters and essential oils, J Sci Food Agric, vol. 102, no. 9, 2022, doi: 10.1002/jsfa.11703.
dc.relationC. Celia, E. Trapasso, D. Cosco, D. Paolino, and M. Fresta, Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent, Colloids Surf B Biointerfaces, vol. 72, no. 1, pp. 155-160, 2009, doi: 10.1016/j.colsurfb.2009.03.007.
dc.relationM. Yildirim, G. Sumnu, and S. Sahin, Rheology, particle-size distribution, and stability of low-fat mayonnaise produced via double emulsions, Food Sci Biotechnol, vol. 25, no. 6, 2016, doi: 10.1007/s10068-016-0248-7.
dc.relationJ. Domagala, M. Sady, T. Grega, and G. Bonczar, Rheological properties and texture of yoghurts when oat-maltodextrin is used as a fat substitute, Int J Food Prop, vol. 9, no. 1, pp. 1-11, 2006, doi: 10.1080/10942910600588776.
dc.relationE. Nsengiyumva and P. Alexandridis, Xanthan gum in aqueous solutions: Fundamentals and applications , Int J Biol Macromol, vol. 216, pp. 583-604, 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.06.189.
dc.relationH. A. Barnes, Rheology of emulsions - a review, Colloids Surf A Physicochem Eng Asp, vol. 91, pp. 89-95, 1994, doi: 10.1016/0927-7757(93)02719-U.
dc.relationJ. Vicente, L. J. B. Pereira, L. P. H. Bastos, M. G. de Carvalho, and E. E. Garcia-Rojas, Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability, Int J Biol Macromol, vol. 120, pp. 339-345, 2018, doi: 10.1016/j.ijbiomac.2018.08.041.
dc.relationV. Krstonosic, L. Dokic, I. Nikolic, and M. Milanovic, Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch, Food Hydrocoll, vol. 45, pp. 9-17, 2015, doi: 10.1016/j.foodhyd.2014.10.024.
dc.relationJ. D. Echeverri, M. J. Alhajj, N. Montero, C. J. Yarce, A. Barrera-Ocampo, and C. H. Salamanca, Study of in vitro and in vivo carbamazepine release from coarse and nanometric pharmaceutical emulsions obtained via ultra-high-pressure homogenization, Pharmaceuticals, vol. 13, no. 4, 2020, doi: 10.3390/ph13040053.
dc.relationL. S. C. Wan, P. W. S. Heng, and L. F. Wong, Relationship between swelling and drug release in a hydrophilic matrix, Drug Dev Ind Pharm, vol. 19, no. 10, pp. 1201-1210, 1993, doi: 10.3109/03639049309063012.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDiseño de formas farmacéuticas orales como rutas para dosificación de Bromhidrato de Galantamina
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución