| dc.contributor | Garavito Aguilar, Zayra Viviana | |
| dc.contributor | Lattig Matiz, María Claudia | |
| dc.contributor | Peñaranda Fajardo, Natalia Melisa | |
| dc.contributor | Laboratorio de Biología del Desarrollo - BIOLDES | |
| dc.creator | Otálora Tarazona, Sebastián | |
| dc.date.accessioned | 2023-02-02T20:23:02Z | |
| dc.date.accessioned | 2023-09-07T00:42:30Z | |
| dc.date.available | 2023-02-02T20:23:02Z | |
| dc.date.available | 2023-09-07T00:42:30Z | |
| dc.date.created | 2023-02-02T20:23:02Z | |
| dc.date.issued | 2022-12-12 | |
| dc.identifier | http://hdl.handle.net/1992/64560 | |
| dc.identifier | instname:Universidad de los Andes | |
| dc.identifier | reponame:Repositorio Institucional Séneca | |
| dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727669 | |
| dc.description.abstract | The zebrafish larval excretory system, the pronephros, originates from the Intermediate Mesoderm (IM) from bilateral cell progenitors. It is composed of a filtration unit, the glomerulus, and a pair of functionally and genetically segmented tubules. The Extracellular Matrix (ECM) regulates morphogenesis in several ways, by contributing to establishing polarity, being a substrate for migration, or controlling morphogen diffusion. Previous studies show that the ECM protein, Fibronectin (FN1), performs functions regulating the assembly of proximal pronephric tubules. Here we found that fibronectin is not only affecting glomerular and Proximal Convoluted Tubules (PCT) structures but also is affecting the positioning and proximal segment specification. Using Histology with Plastic resin and Whole-embryo in situ hybridization, we found that glomerulus depends on fibronectin presence for its midline fusion but not for coalescence or specification. Furthermore, we found that the PCT segment is elongated in FN1-deficient embryos, but shortened in FN1-overexpressed embryos. Our results contribute to understanding the role of ECM in the Pronehpric system showing its role in segment specification and proximal structure organization. The study provides new insights into regulation pathways that could be modulated by ECM. Further studies need to be done to evaluate the role of ECM in the distributions of factors such as Retinoic Acid and its role in segmentation, as well as the antagonism of hand2 and the interaction with osr1. | |
| dc.language | spa | |
| dc.language | eng | |
| dc.publisher | Universidad de los Andes | |
| dc.publisher | Maestría en Ciencias Biológicas | |
| dc.publisher | Facultad de Ciencias | |
| dc.publisher | Departamento de Ciencias Biológicas | |
| dc.relation | Burridge, K., & Doughman, R. (2006). Front and back by Rho and Rac. Nature Cell Biology, 8(8), 781-782. | |
| dc.relation | Chou, C.-W., Chiu, C.-H., & Liu, Y.-W. (2013). Fibronectin mediates correct positioning of the interrenal organ in zebrafish. Developmental Dynamics, 242(5), 432-443. https://doi.org/10.1002/dvdy.23932 | |
| dc.relation | Darribère, T., & Schwarzbauer, J. E. (2000). Fibronectin matrix composition and organization can regulate cell migration during amphibian development. Mechanisms of development, 92(2), 239-250. | |
| dc.relation | Drake, P. M., & Franz-Odendaal, T. A. (2018). A potential role for MMPs during the formation of non-neurogenic placodes. Journal of Developmental Biology, 6(3), 20. | |
| dc.relation | Drummond, B. E., Chambers, B. E., Wesselman, H. M., Gibson, S., Arceri, L., Ulrich, M. N., ... & Wingert, R. A. (2022). osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2. Biomedicines, 10(11), 2868. | |
| dc.relation | Garavito-Aguilar, Z. V., Riley, H. E., & Yelon, D. (2010). Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development, 137(19), 3215-3220. | |
| dc.relation | Gilbert, S. F., & Barresi, M. J. F. (2016). Developmental biology (11th). Sinauer Associates. MA, USA. | |
| dc.relation | Huang, C. J., Wilson, V., Pennings, S., MacRae, C. A., & Mullins, J. (2013). Sequential effects of spadetail, one-eyed pinhead and no tail on midline convergence of nephric primordia during zebrafish embryogenesis. Developmental biology, 384(2), 290-300. | |
| dc.relation | Ichimura, K., Fukuyo, Y., Nakamura, T., Powell, R., Sakai, T., & Obara, T. (2012). Structural disorganization of pronephric glomerulus in zebrafish mpp5a/nagie oko mutant. Developmental Dynamics, 241(12), 1922-1932. | |
| dc.relation | Jiang, S. T., Chuang, W. J., & Tang, M. J. (2000). Role of fibronectin deposition in branching morphogenesis of Madin-Darby canine kidney cells. Kidney international, 57(5), 1860-1867. | |
| dc.relation | Louis, F., Pannetier, P., Souguir, Z., Le Cerf, D., Valet, P., Vannier, J. P., ... & Demange, E. (2017). A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes. Biotechnology and bioengineering, 114(8), 1813-1824. | |
| dc.relation | Li, Y., Cheng, C. N., Verdun, V. A., & Wingert, R. A. (2014). Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Developmental biology, 386(1), 111-122. | |
| dc.relation | Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., ... & Hubbell, J. A. (2011). Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Science translational medicine, 3(100), 100ra89-100ra89. | |
| dc.relation | Miceli, R., Kroeger, P. T., & Wingert, R. A. (2014). Molecular mechanisms of podocyte development revealed by zebrafish kidney research. Cell & developmental biology, 3. | |
| dc.relation | McNeil, E., Capaldo, C. T., & Macara, I. G. (2006). Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Molecular biology of the cell, 17(4), 1922-1932. | |
| dc.relation | Mugford, J. W., Sipilä, P., McMahon, J. A., & McMahon, A. P. (2008). Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Developmental biology, 324(1), 88-98. | |
| dc.relation | National Research Council (2011) Guide for the Care and Use of Laboratory Animals(8). Washington DC: The National Academy Press. https://doi.org/10.17226/12910. | |
| dc.relation | Neto, A., Mercader, N., & Gómez-Skarmeta, J. L. (2012). The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development, 139(2), 301-311. | |
| dc.relation | Osmond, M. K., Butler, A. J., Voon, F. C., & Bellairs, R. U. T. H. (1991). The effects of retinoic acid on heart formation in the early chick embryo. Development, 113(4), 1405-1417. | |
| dc.relation | Otalora-Tarazona, S & Garavito-Aguilar, Z. (2018) Caracterización Estructural del Desarrollo Pronéfrico del Pez cebra Danio rerio. [Bachelor of Science Thesis]. Universidad de los Andes: Colombia. | |
| dc.relation | Perner, B., Englert, C., & Bollig, F. (2007). The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental biology, 309(1), 87-96. | |
| dc.relation | Perens, E. A., Garavito-Aguilar, Z. V., Guio-Vega, G. P., Peña, K. T., Schindler, Y. L., & Yelon, D. (2016). Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. Elife, 5, e19941. | |
| dc.relation | Perens, E. A., Diaz, J. T., Quesnel, A., Askary, A., Crump, J. G., & Yelon, D. (2021). osr1 couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development, 148(15), dev198408. | |
| dc.relation | Piñeros-Romero, C.C. (2018) Effect of the hand2 transcription factor on pronephric tubulogenesis during early zebrafish kidney development.[Masters in Biological Science Thesis] Universidad de los Andes: Colombia. | |
| dc.relation | Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 9, 137-146 (2013). https://doi.org/10.1038/nrneph.2012.290 | |
| dc.relation | Rozario, T., & DeSimone, D. W. (2010). The extracellular matrix in development and morphogenesis: a dynamic view. Developmental biology, 341(1), 126-140. | |
| dc.relation | RStudio Team (2022). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/. | |
| dc.relation | Sart, S., Yan, Y., Li, Y., Lochner, E., Zeng, C., & Ma, T. (2016). Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta biomaterialia, 30, 222-232. | |
| dc.relation | Sakai, T., Larsen, M., & Yamada, K. M. (2003). Fibronectin requirement in branching morphogenesis. Nature, 423(6942), 876-881. | |
| dc.relation | Sanabria, C.A. (2018) Effect of loss-of-function mutation of fibronectin (fn1) gene on renal tubulogenesis in zebrafish (Danio rerio). [Master in Biological Sciences Thesis] Universidad de los Andes: Colombia. | |
| dc.relation | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., ... Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | |
| dc.relation | Sullivan-Brown, J., Bisher, M. E., & Burdine, R. D. (2011). Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nature protocols, 6(1), 46-55. | |
| dc.relation | Tortelli, F., Pisano, M., Briquez, P. S., Martino, M. M., & Hubbell, J. A. (2013). Fibronectin binding modulates CXCL11 activity and facilitates wound healing. PloS one, 8(10), e79610. | |
| dc.relation | Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature protocols, 3(1), 59-69. | |
| dc.relation | Trinh, L. A. & Stainier, D. Y. (2004) Fibronectin regulates epithelial organization during myocardial migration in Zebrafish. Developmental Cell,6(3), 371-382. | |
| dc.relation | Van Helvert, S., Storm, C., & Friedl, P. (2018). Mechanoreciprocity in cell migration. Nature cell biology, 20(1), 8-20. | |
| dc.relation | Westerfield, M. (2000) The Zebrafish Book: A guide for the laboratory use of Zebrafish (Danio rerio) (4). Eugene: Univ. of Oregon Press. | |
| dc.relation | Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org. | |
| dc.relation | Wingert, R. A., & Davidson, A. J. (2008). The zebrafish pronephros: A model to study nephron segmentation. Kidney International, 73(10), 1120-1127. https://doi.org/10.1038/ki.2008.37 | |
| dc.relation | Yelon, D., Ticho, B., Halpern, M. E., Ruvinsky, I., Ho, R. K., Silver, L. M., & Stainier, D. Y. (2000). The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development, 127(12), 2573-2582. | |
| dc.relation | Zhang, J., Yuan, S., Vasilyev, A., & Arnaout, M. A. (2015). The transcriptional coactivator Taz regulates proximodistal patterning of the pronephric tubule in zebrafish. Mechanisms of development, 138, 328-335. | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | http://purl.org/coar/access_right/c_abf2 | |
| dc.title | Fibronectin (Fn1) mediates the proper organization of the Proximal Convoluted Tubule in Zebrafish Pronephros | |
| dc.type | Trabajo de grado - Maestría | |