dc.contributor | Valencia González, Alejandra Catalina | |
dc.contributor | Quiroga Puello, Luis | |
dc.contributor | Bohmann, Martin | |
dc.contributor | Óptica Cuántica Experimental | |
dc.creator | Sabogal Pérez, Daniel Ricardo | |
dc.date.accessioned | 2023-07-11T15:40:17Z | |
dc.date.accessioned | 2023-09-07T00:40:14Z | |
dc.date.available | 2023-07-11T15:40:17Z | |
dc.date.available | 2023-09-07T00:40:14Z | |
dc.date.created | 2023-07-11T15:40:17Z | |
dc.date.issued | 2023-07-07 | |
dc.identifier | http://hdl.handle.net/1992/68329 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727617 | |
dc.description.abstract | In this thesis, the spatial variables of light are used in the practical and fundamental realms. In the practical domain, a theoretical and experimental study of the method that is referred to as the controllable decoherence assisted scheme is presented. The scheme is based on the possibility of introducing decoherence in a controllable way. Theoretically, it is shown that the method allows reducing the amount of information that an eavesdropper can obtain in the BB84 protocol under the entangling probe attack. Experimentally, two proof-of-principle experiments using heralded single photons were performed. One in which the BB84 protocol is implemented without adding decoherence, and another in which the controllable decoherence assisted scheme is used in the BB84 protocol. In the first one, it is found an average value of QBER= 3.9 ± 0.3 % for five keys of ¿ 1000 bits each one. In the second experiment, it is observed that the controllable decoherence introduced in Alice's site is indeed canceled, allowing to recover low values of the QBER. Regarding the study of fundamental concepts by means of light spatial variables, the generation of spatial-bin entanglement is addressed. Specifically, the spatial analog of the Franson interferometer is presented. The Franson interferometer is used to obtain time-bin entanglement. This is achieved by using pairs of temporarily correlated photons and two Mach-Zehnder interferometers to have the option of light traveling by long or short paths that will constitute the basis of time-bin entanglement. In the spatial version proposed, the interferometers are replaced by tunable beam displacers to obtain left or right spatial modes that will constitute the spatial-bin entanglement. Moreover, it is explained how to violate the Bell inequality in the position-transverse momentum domain using the spatial Franson interferometer. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | S. Weisenburger and V. Sandoghdar, "Light microscopy: an ongoing contemporary revolution,"
Contemp. Phys. 56, 123-143 (2015). | |
dc.relation | J. Chesnoy, Undersea fiber communication systems (Academic press, 2015). | |
dc.relation | A. Aspect, J. Dalibard, and G. Roger, "Experimental test of bell's inequalities using time varying analyzers, Phys. review letters 49, 1804 (1982). | |
dc.relation | W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature 299, 802-803
(1982) | |
dc.relation | C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin
tossing," Theor. Comput. Sci. 560, 7-11 (2014). | |
dc.relation | P. W. Shor and J. Preskill, "Simple proof of security of the bb84 quantum key distribution
protocol," Phys. Rev. Lett. 85, 441-444 (2000). | |
dc.relation | M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, "Invited review article: Single-photon
sources and detectors," Rev. Sci. Instruments 82, 071101 (2011). | |
dc.relation | D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, "Security of quantum key distribution
with imperfect devices," in International Symposium onInformation Theory, 2004. ISIT 2004.
Proceedings., (IEEE, 2004), p. 136. | |
dc.relation | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Lütkenhaus, and M. Peev,
"The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301-1350 (2009). | |
dc.relation | M. A. Nielsen and I. Chuang, "Quantum computation and quantum information," (2002). | |
dc.relation | N. Lütkenhaus and M. Jahma, "Quantum key distribution with realistic states: photon-number
statistics in the photon-number splitting attack," New J. Phys. 4, 44 (2002). | |
dc.relation | M. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, "Heralded single-photon sources for
quantum-key-distribution applications," Phys. Rev. A 93, 012331 (2016). | |
dc.relation | S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, "Device-independent
quantum key distribution secure against collective attacks," New J. Phys. 11, 045021 (2009). | |
dc.relation | Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Decoherence free subspaces in quantum key distribution," Phys. Rev. Lett. 91, 087901 (2003). | |
dc.relation | A. N. Korotkov and K. Keane, "Decoherence suppression by quantum measurement reversal,"
Phys. Rev. A 81, 040103 (2010). | |
dc.relation | N. Jain, B. Stiller, I. Khan, D. Elser, C. Marquardt, and G. Leuchs, "Attacks on practical
quantum key distribution systems (and how to prevent them)," Contemp. Phys. 57, 366-387
(2016). | |
dc.relation | N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution,"
Phys. Rev. A 61, 052304 (2000). | |
dc.relation | B. A. Slutsky, R. Rao, P.-C. Sun, and Y. Fainman, "Security of quantum cryptography against
individual attacks," Phys. Rev. A 57, 2383-2398 (1998). | |
dc.relation | B. A. Slutsky, R. Rao, P.-C. Sun, and Y. Fainman, "Security of quantum cryptography against
individual attacks," Phys. Rev. A 57, 2383-2398 (1998). | |
dc.relation | J. H. Shapiro and F. N. C. Wong, "Attacking quantum key distribution with single-photon
two-qubit quantum logic, Phys. Rev. A 73, 012315 (2006). | |
dc.relation | T. Kim, I. Stork genannt Wersborg, F. N. C. Wong, and J. H. Shapiro, "Complete physical
simulation of the entangling-probe attack on the bennett-brassard 1984 protocol," Phys. Rev.
A 75, 042327 (2007). | |
dc.relation | H. E. Brandt, "Quantum-cryptographic entangling probe," Phys. Rev. A 71, 042312 (2005). | |
dc.relation | X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, and A. Zeilinger, "Experimental violation of a
bell inequality with two different degrees of freedom of entangled particle pairs," Phys. Rev. A
79, 042101 (2009) | |
dc.relation | J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989). | |
dc.relation | M. H. Rubin and Y. H. Shih, "Models of a two-photon einstein-podolsky-rosen interference
experiment," Phys. Rev. A 45, 8138-8147 (1992). | |
dc.relation | T. Brougham, S. M. Barnett, K. T. McCusker, P. G. Kwiat, and D. J. Gauthier, "Security of
high-dimensional quantum key distribution protocols using franson interferometers," J. Phys.
B: At. Mol. Opt. Phys. 46, 104010 (2013). | |
dc.relation | P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a bell-inequality
experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993) | |
dc.relation | S. Ecker, P. Sohr, L. Bulla, R. Ursin, and M. Bohmann, "Remotely establishing polarization
entanglement over noisy polarization channels," Phys. Rev. Appl. 17, 034009 (2022). | |
dc.relation | S. Etcheverry, G. Cañas, E. Gómez, W. Nogueira, C. Saavedra, G. Xavier, and G. Lima,
"Quantum key distribution session with 16-dimensional photonic states," Sci. reports 3, 1-5
(2013). | |
dc.relation | R. W. Boyd, A. Jha, M. Malik, C. O'Sullivan, B. Rodenburg, and D. J. Gauthier, "Quantum key
distribution in a high-dimensional state space: exploiting the transverse degree of freedom of
the photon," in Advances in Photonics of Quantum Computing, Memory, and Communication
IV, , vol. 7948 (SPIE, 2011), pp. 79-84. | |
dc.relation | F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, and H. Zbinden, "Simple and high-speed
polarization-based qkd," Appl. Phys. Lett. 112, 051108 (2018). | |
dc.relation | D. F. Urrego, J.-R. Álvarez, O. Calderón-Losada, J. Svozilík, M. N. nez, and A. Valencia,
"Implementation and characterization of a controllable dephasing channel based on coupling
polarization and spatial degrees of freedom of light," Opt. Express 26, 11940-11949 (2018). | |
dc.relation | C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, "Generalized privacy amplification,"
IEEE Transactions on Inf. theory 41, 1915-1923 (1995). | |
dc.relation | E. Collett, Field Guide to Polarization, Field Guides (SPIE Press, 2005). | |
dc.relation | M. Beck, Quantum Mechanics: Theory and Experiment (Oxford University Press, 2012). | |
dc.relation | Y. Shih, "Entangled biphoton source - property and preparation," Reports on Prog. Phys. 66,
1009 (2003) | |
dc.relation | R. J. Glauber, "The quantum theory of optical coherence," Phys. Rev. 130, 2529-2539 (1963). | |
dc.relation | S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund,
T. Gehring, C. Lupo, C. Ottaviani et al., "Advances in quantum cryptography," Adv. optics
photonics 12, 1012-1236 (2020). | |
dc.relation | S. M. Barnett and S. Croke, "Quantum state discrimination," Adv. Opt. Photon. 1, 238-278
(2009). | |
dc.relation | D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys.
Rev. A 64, 052312 (2001). | |
dc.relation | L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, "Tunable beam displacer," Rev. Sci.
Instruments 86, 033109 (2015). | |
dc.relation | O. Calderón Losada, Controlling correlations of paired photons for fundamental physics and
applications in quantum imaging and generation of heralded single photons (Uniandes, 2019). | |
dc.relation | Y. Shih, An Introduction to Quantum Optics: Photon and Biphoton Physics, Series in Optics
and Optoelectronics (CRC Press, 2014). | |
dc.relation | Y. H. Shih and C. O. Alley, "New type of einstein-podolsky-rosen-bohm experiment using
pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61,
2921-2924 (1988). | |
dc.relation | D. A. Guzmán, L. J. Uribe, A. Valencia, F. J. Rodríguez, and L. Quiroga, "Contrasting classical
probability concepts with quantum mechanical behavior in the undergraduate laboratory," Eur.
J. Phys. 36, 055039 (2015) | |
dc.relation | Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, "Two-photon
interference in a standard mach-zehnder interferometer," Phys. Rev. A 49, 4243-4246 (1994). | |
dc.relation | H. Kim, S. M. Lee, O. Kwon, and H. S. Moon, "Two-photon interference of polarization entangled photons in a franson interferometer," Sci. Reports 7, 5772 (2017). | |
dc.relation | O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, "Time-bin entangled photon pairs
from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser," Opt.
Express 21, 25492-25500 (2013). | |
dc.relation | J. Flórez, J.-R. Álvarez, O. Calderón-Losada, L. J. Salazar-Serrano, and A. Valencia,
"Interference of two pulse-like spatial beams with arbitrary transverse separation," J. Opt. 18,
125201 (2016). | |
dc.relation | J. Schneeloch and J. C. Howell, "Introduction to the transverse spatial correlations in
spontaneous parametric down-conversion through the biphoton birth zone," J. Opt. 18, 053501
(2016). | |
dc.relation | A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical
reality be considered complete?" Phys. Rev. 47, 777-780 (1935). | |
dc.relation | J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local
hidden-variable theories," Phys. review letters 23, 880 (1969). | |
dc.relation | T. B. Pittman and J. D. Franson, "Violation of bell's inequality with photons from independent
sources," Phys. Rev. Lett. 90, 240401 (2003). | |
dc.relation | A. Aspect, P. Grangier, and G. Roger, "Experimental realization of einstein-podolsky-rosen bohm gedankenexperiment: A new violation of bell's inequalities," Phys. Rev. Lett. 49, 91-94
(1982). | |
dc.relation | D. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, "Postselection-free
energy-time entanglement," Phys. Rev. A 54, R1-R4 (1996). | |
dc.relation | R. Wolf, Quantum Key Distribution: An Introduction with Exercises, Lecture Notes in Physics
(Springer International Publishing, 2021) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Spatial variables of light: From controlled decoherence in quantum key distribution to the spatial Franson interferometer | |
dc.type | Trabajo de grado - Maestría | |