dc.contributorValencia González, Alejandra Catalina
dc.contributorQuiroga Puello, Luis
dc.contributorBohmann, Martin
dc.contributorÓptica Cuántica Experimental
dc.creatorSabogal Pérez, Daniel Ricardo
dc.date.accessioned2023-07-11T15:40:17Z
dc.date.accessioned2023-09-07T00:40:14Z
dc.date.available2023-07-11T15:40:17Z
dc.date.available2023-09-07T00:40:14Z
dc.date.created2023-07-11T15:40:17Z
dc.date.issued2023-07-07
dc.identifierhttp://hdl.handle.net/1992/68329
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727617
dc.description.abstractIn this thesis, the spatial variables of light are used in the practical and fundamental realms. In the practical domain, a theoretical and experimental study of the method that is referred to as the controllable decoherence assisted scheme is presented. The scheme is based on the possibility of introducing decoherence in a controllable way. Theoretically, it is shown that the method allows reducing the amount of information that an eavesdropper can obtain in the BB84 protocol under the entangling probe attack. Experimentally, two proof-of-principle experiments using heralded single photons were performed. One in which the BB84 protocol is implemented without adding decoherence, and another in which the controllable decoherence assisted scheme is used in the BB84 protocol. In the first one, it is found an average value of QBER= 3.9 ± 0.3 % for five keys of ¿ 1000 bits each one. In the second experiment, it is observed that the controllable decoherence introduced in Alice's site is indeed canceled, allowing to recover low values of the QBER. Regarding the study of fundamental concepts by means of light spatial variables, the generation of spatial-bin entanglement is addressed. Specifically, the spatial analog of the Franson interferometer is presented. The Franson interferometer is used to obtain time-bin entanglement. This is achieved by using pairs of temporarily correlated photons and two Mach-Zehnder interferometers to have the option of light traveling by long or short paths that will constitute the basis of time-bin entanglement. In the spatial version proposed, the interferometers are replaced by tunable beam displacers to obtain left or right spatial modes that will constitute the spatial-bin entanglement. Moreover, it is explained how to violate the Bell inequality in the position-transverse momentum domain using the spatial Franson interferometer.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias - Física
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationS. Weisenburger and V. Sandoghdar, "Light microscopy: an ongoing contemporary revolution," Contemp. Phys. 56, 123-143 (2015).
dc.relationJ. Chesnoy, Undersea fiber communication systems (Academic press, 2015).
dc.relationA. Aspect, J. Dalibard, and G. Roger, "Experimental test of bell's inequalities using time varying analyzers, Phys. review letters 49, 1804 (1982).
dc.relationW. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature 299, 802-803 (1982)
dc.relationC. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Theor. Comput. Sci. 560, 7-11 (2014).
dc.relationP. W. Shor and J. Preskill, "Simple proof of security of the bb84 quantum key distribution protocol," Phys. Rev. Lett. 85, 441-444 (2000).
dc.relationM. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, "Invited review article: Single-photon sources and detectors," Rev. Sci. Instruments 82, 071101 (2011).
dc.relationD. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," in International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., (IEEE, 2004), p. 136.
dc.relationV. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301-1350 (2009).
dc.relationM. A. Nielsen and I. Chuang, "Quantum computation and quantum information," (2002).
dc.relationN. Lütkenhaus and M. Jahma, "Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack," New J. Phys. 4, 44 (2002).
dc.relationM. Schiavon, G. Vallone, F. Ticozzi, and P. Villoresi, "Heralded single-photon sources for quantum-key-distribution applications," Phys. Rev. A 93, 012331 (2016).
dc.relationS. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, "Device-independent quantum key distribution secure against collective attacks," New J. Phys. 11, 045021 (2009).
dc.relationZ. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Decoherence free subspaces in quantum key distribution," Phys. Rev. Lett. 91, 087901 (2003).
dc.relationA. N. Korotkov and K. Keane, "Decoherence suppression by quantum measurement reversal," Phys. Rev. A 81, 040103 (2010).
dc.relationN. Jain, B. Stiller, I. Khan, D. Elser, C. Marquardt, and G. Leuchs, "Attacks on practical quantum key distribution systems (and how to prevent them)," Contemp. Phys. 57, 366-387 (2016).
dc.relationN. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61, 052304 (2000).
dc.relationB. A. Slutsky, R. Rao, P.-C. Sun, and Y. Fainman, "Security of quantum cryptography against individual attacks," Phys. Rev. A 57, 2383-2398 (1998).
dc.relationB. A. Slutsky, R. Rao, P.-C. Sun, and Y. Fainman, "Security of quantum cryptography against individual attacks," Phys. Rev. A 57, 2383-2398 (1998).
dc.relationJ. H. Shapiro and F. N. C. Wong, "Attacking quantum key distribution with single-photon two-qubit quantum logic, Phys. Rev. A 73, 012315 (2006).
dc.relationT. Kim, I. Stork genannt Wersborg, F. N. C. Wong, and J. H. Shapiro, "Complete physical simulation of the entangling-probe attack on the bennett-brassard 1984 protocol," Phys. Rev. A 75, 042327 (2007).
dc.relationH. E. Brandt, "Quantum-cryptographic entangling probe," Phys. Rev. A 71, 042312 (2005).
dc.relationX.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, and A. Zeilinger, "Experimental violation of a bell inequality with two different degrees of freedom of entangled particle pairs," Phys. Rev. A 79, 042101 (2009)
dc.relationJ. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989).
dc.relationM. H. Rubin and Y. H. Shih, "Models of a two-photon einstein-podolsky-rosen interference experiment," Phys. Rev. A 45, 8138-8147 (1992).
dc.relationT. Brougham, S. M. Barnett, K. T. McCusker, P. G. Kwiat, and D. J. Gauthier, "Security of high-dimensional quantum key distribution protocols using franson interferometers," J. Phys. B: At. Mol. Opt. Phys. 46, 104010 (2013).
dc.relationP. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993)
dc.relationS. Ecker, P. Sohr, L. Bulla, R. Ursin, and M. Bohmann, "Remotely establishing polarization entanglement over noisy polarization channels," Phys. Rev. Appl. 17, 034009 (2022).
dc.relationS. Etcheverry, G. Cañas, E. Gómez, W. Nogueira, C. Saavedra, G. Xavier, and G. Lima, "Quantum key distribution session with 16-dimensional photonic states," Sci. reports 3, 1-5 (2013).
dc.relationR. W. Boyd, A. Jha, M. Malik, C. O'Sullivan, B. Rodenburg, and D. J. Gauthier, "Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon," in Advances in Photonics of Quantum Computing, Memory, and Communication IV, , vol. 7948 (SPIE, 2011), pp. 79-84.
dc.relationF. Grünenfelder, A. Boaron, D. Rusca, A. Martin, and H. Zbinden, "Simple and high-speed polarization-based qkd," Appl. Phys. Lett. 112, 051108 (2018).
dc.relationD. F. Urrego, J.-R. Álvarez, O. Calderón-Losada, J. Svozilík, M. N. nez, and A. Valencia, "Implementation and characterization of a controllable dephasing channel based on coupling polarization and spatial degrees of freedom of light," Opt. Express 26, 11940-11949 (2018).
dc.relationC. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Transactions on Inf. theory 41, 1915-1923 (1995).
dc.relationE. Collett, Field Guide to Polarization, Field Guides (SPIE Press, 2005).
dc.relationM. Beck, Quantum Mechanics: Theory and Experiment (Oxford University Press, 2012).
dc.relationY. Shih, "Entangled biphoton source - property and preparation," Reports on Prog. Phys. 66, 1009 (2003)
dc.relationR. J. Glauber, "The quantum theory of optical coherence," Phys. Rev. 130, 2529-2539 (1963).
dc.relationS. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., "Advances in quantum cryptography," Adv. optics photonics 12, 1012-1236 (2020).
dc.relationS. M. Barnett and S. Croke, "Quantum state discrimination," Adv. Opt. Photon. 1, 238-278 (2009).
dc.relationD. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
dc.relationL. J. Salazar-Serrano, A. Valencia, and J. P. Torres, "Tunable beam displacer," Rev. Sci. Instruments 86, 033109 (2015).
dc.relationO. Calderón Losada, Controlling correlations of paired photons for fundamental physics and applications in quantum imaging and generation of heralded single photons (Uniandes, 2019).
dc.relationY. Shih, An Introduction to Quantum Optics: Photon and Biphoton Physics, Series in Optics and Optoelectronics (CRC Press, 2014).
dc.relationY. H. Shih and C. O. Alley, "New type of einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).
dc.relationD. A. Guzmán, L. J. Uribe, A. Valencia, F. J. Rodríguez, and L. Quiroga, "Contrasting classical probability concepts with quantum mechanical behavior in the undergraduate laboratory," Eur. J. Phys. 36, 055039 (2015)
dc.relationY. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, "Two-photon interference in a standard mach-zehnder interferometer," Phys. Rev. A 49, 4243-4246 (1994).
dc.relationH. Kim, S. M. Lee, O. Kwon, and H. S. Moon, "Two-photon interference of polarization entangled photons in a franson interferometer," Sci. Reports 7, 5772 (2017).
dc.relationO. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, and Y.-H. Kim, "Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser," Opt. Express 21, 25492-25500 (2013).
dc.relationJ. Flórez, J.-R. Álvarez, O. Calderón-Losada, L. J. Salazar-Serrano, and A. Valencia, "Interference of two pulse-like spatial beams with arbitrary transverse separation," J. Opt. 18, 125201 (2016).
dc.relationJ. Schneeloch and J. C. Howell, "Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone," J. Opt. 18, 053501 (2016).
dc.relationA. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
dc.relationJ. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. review letters 23, 880 (1969).
dc.relationT. B. Pittman and J. D. Franson, "Violation of bell's inequality with photons from independent sources," Phys. Rev. Lett. 90, 240401 (2003).
dc.relationA. Aspect, P. Grangier, and G. Roger, "Experimental realization of einstein-podolsky-rosen bohm gedankenexperiment: A new violation of bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
dc.relationD. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, "Postselection-free energy-time entanglement," Phys. Rev. A 54, R1-R4 (1996).
dc.relationR. Wolf, Quantum Key Distribution: An Introduction with Exercises, Lecture Notes in Physics (Springer International Publishing, 2021)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSpatial variables of light: From controlled decoherence in quantum key distribution to the spatial Franson interferometer
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución