dc.contributorCifuentes de la Portilla, Christian Javier
dc.contributorRodríguez Herrera, Carlos Francisco
dc.contributorMarañón León, Edgar Alejandro
dc.contributorPerdomo Charry, Oscar Julián
dc.contributorGrupo de Ingenieria Biomédica
dc.contributorGrupo de Dinámica avazanda
dc.contributorGrupo de Biomecánica
dc.creatorRíos Pinzón, Sergio Iván
dc.date.accessioned2023-08-04T18:37:30Z
dc.date.accessioned2023-09-07T00:39:34Z
dc.date.available2023-08-04T18:37:30Z
dc.date.available2023-09-07T00:39:34Z
dc.date.created2023-08-04T18:37:30Z
dc.date.issued2023-08-01
dc.identifierhttp://hdl.handle.net/1992/69245
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727604
dc.description.abstractEl presente articulo abarca la investigación referente a el planteamiento de un modelo para el análisis cinemático del deporte Escalada en la modalidad Boulder, así también su desarrollo e implementación integrando Python y Matlab. Presenta una breve introducción al contexto científico y social del deporte, seguido de una breve descripción del estado del arte enfocado en modelos biomecánicos y computacionales. Desarrolla la metodología de creación del modelo, sus variantes, el alcance y limitaciones presentes, el modelo consta de dos partes independientes el muro y el escalador, así como su interacción para la solución del problema de la escalada, el modelo se fundamenta en algoritmos heurísticos bajo conceptos matemáticos de quaterniones y teoría de grafos. Se presenta un método innovador para la solución en hipergrafos direccionando el centro de masa de un escalador sobre estructuras de cuatro puntos de apoyo para el cuerpo humano. Se presenta la viabilidad de encontrar soluciones optimas en función de parámetros físicos de un deportista.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Mecánica
dc.relationC. M. Mermier, J. M. Janot, D. L. Parker, y J. G. Swan, "Physiological and anthropometric determinants of sport climbing performance", 2000. [En línea]. Disponible en: www.bjsportmed.com
dc.relationP. B. Watts, "Physiology of difficult rock climbing", European Journal of Applied Physiology, vol. 91, núm. 4. pp. 361-372, abril de 2004. doi: 10.1007/s00421-003-1036-7.
dc.relationL. V Giles, E. C. Rhodes, y J. E. Taunton, "The Physiology of Rock Climbing", 2006.
dc.relationA. W. Sheel, "Physiology of sport rock climbing", British Journal of Sports Medicine, vol. 38, núm. 3. pp. 355-359, junio de 2004. doi: 10.1136/bjsm.2003.008169.
dc.relationB. de Geus, S. V. O Driscoll, y R. Meeusen, "Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty", Eur J Appl Physiol, vol. 98, núm. 5, pp. 489-496, nov. 2006, doi: 10.1007/s00421-006-0287-5.
dc.relationF. Quaine y L. Martin, "A biomechanical study of equilibrium in sport rock climbing", 1999. [En línea]. Disponible en: www.elsevier.com/locate/gaitpost
dc.relationS. Kozin et al., "Comparative biomechanical characteristics of one-arm hang in climbing for beginners and qualified athletes", Acta Bioeng Biomech, vol. 22, núm. 1, 2020, doi: 10.37190/ABB-01440-2019-03.
dc.relationA. Shunko y T. Kravchuk, "Competitive modelling in speed climbing", BIO Web Conf, vol. 26, p. 00051, 2020, doi: 10.1051/bioconf/20202600051.
dc.relationF. Quaine, L. Martin, y P. Blanchi, "The Effect of Body Position and Number of Supports on Wall Reaction Forces in Rock Climbing", 1997.
dc.relationT. Bretl y S. Lall, "A Fast and Adaptive Test of Static Equilibrium for Legged Robots".
dc.relationT. Bretl, "Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem", International Journal of Robotics Research, vol. 25, núm. 4, pp. 317-342, abr. 2006, doi: 10.1177/0278364906063979.
dc.relationJ. R. Pijpers, R. R. D. Oudejans, y F. C. Bakker, "Changes in the perception of action possibilities while climbing to fatigue on a climbing wall", J Sports Sci, vol. 25, núm. 1, pp. 97-110, ene. 2007, doi: 10.1080/02640410600630894.
dc.relationC. J. Low, "Biomechanics of Rock-Climbing Technique", 2005.
dc.relationN. Özkaya, D. Leger, D. Goldsheyder, y M. Nordin, "Fundamentals of Biomechanics".
dc.relationD. G. E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen, y S. N. Whittlesey, Research methods in biomechanics.
dc.relationC. F. Rodríguez Herrera y J. C. Leyva, Dinámica mecánica., 2a ed. Bogotá: Ediciones Uniandes, 2023. Consultado: el 4 de junio de 2023. [En línea]. Disponible en: https://ediciones-uniandes-edu-co.ezproxy.uniandes.edu.co/library/search/Din%C3%A1mica%20mec%C3%A1nica
dc.relationA. Artoni, M. Tomasi, y F. Di Puccio, "kinematic analysis of the LOLOTTE technique in rock climbing", 2017. [En línea]. Disponible en: http://www.asme.org/about-asme/terms-of-use
dc.relationF. K. Fuss y G. Niegl, "Instrumented climbing holds and performance analysis in sport climbing", Sports Technology, vol. 1, núm. 6, pp. 301-313, mar. 2009, doi: 10.1002/jst.71.
dc.relationJ. Boulanger, L. Seifert, R. Herault, y J. F. Coeurjolly, "Automatic Sensor-Based Detection and Classification of Climbing Activities", IEEE Sens J, vol. 16, núm. 3, pp. 742-749, feb. 2016, doi: 10.1109/JSEN.2015.2481511.
dc.relationM. Andric, F. Ricci, y F. Zini, "Sensor-Based Activity Recognition and Performance Assessment in Climbing: A Review", IEEE Access, vol. 10, pp. 108583-108603, 2022, doi: 10.1109/ACCESS.2022.3213683.
dc.relationJ. Richter, R. B. Beltrán, G. Köstermeyer, y U. Heinkel, "Human climbing and bouldering motion analysis: A survey on sensors, motion capture, analysis algorithms, recent advances and applications", en VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SciTePress, 2020, pp. 751-758. doi: 10.5220/0008867307510758.
dc.relationA. Ogawa, A. Mita, A. Yorozu, y M. Takahashi, "Markerless knee joint position measurement using depth data during stair walking", Sensors (Switzerland), vol. 17, núm. 11, nov. 2017, doi: 10.3390/s17112698.
dc.relationF. K. Fuss y & G. Niegl, "The fully instrumented climbing wall: performance analysis, route grading and vector diagrams-a preliminary study", 2008.
dc.relationB. Lechner, I. Filzwieser, M. Lieschnegg, P. Sammer, E. Wallnöfer-Zentrum, y H. In Tirol, "A Climbing Hold with an Integrated Three-Dimensional Force Measurement and Wireless Data Acquisition", 2013.
dc.relationR. Seifert y K. Davids, "Climbing skill and complexity of climbing wall design: assessment of jerk as a novel indicator of performance fluency". [En línea]. Disponible en: http://shura.shu.ac.uk/8793/
dc.relationF. A. Raheem y U. I. Hameed, "Interactive Heuristic D* Path Planning Solution Based on PSO for Two-Link Robotic Arm in Dynamic Environment", World Journal of Engineering and Technology, vol. 07, núm. 01, pp. 80-99, 2019, doi: 10.4236/wjet.2019.71005.
dc.relationR. Kajastila, L. Holsti, y P. Hamalainen, "The augmented Climbing wall: High-exertion proximity interaction on a wall-sized interactive surface", en Conference on Human Factors in Computing Systems - Proceedings, Association for Computing Machinery, May 2016, pp. 758-769. doi: 10.1145/2858036.2858450.
dc.relationA. V. Tarasov, D. A. Loktev, S. V. Deordiev, I. Y. Petuhova, y I. V. Tarasov, "Search for optimal methods for calculating atypical spatial structures on the example of a climbing wall", en Journal of Physics: Conference Series, Institute of Physics Publishing, ene. 2020. doi: 10.1088/1742-6596/1425/1/012125.
dc.relationL. Kempen, "A fair grade: assessing difficulty of climbing routes through machine learning", 2018.
dc.relationF. Stapel, "A Heuristic Approach to Indoor Rock-Climbing Route Generation", 2020.
dc.relationC. Phillips, L. Becker, y E. Bradley, "An assistance system for indoor Rock-Climbing route setting", Chaos, vol. 22, núm. 1, ene. 2012, doi: 10.1063/1.3693047.
dc.relationF. Duchon et al., "Path planning with modified A star algorithm for a mobile robot", en Procedia Engineering, Elsevier Ltd, 2014, pp. 59-69. doi: 10.1016/j.proeng.2014.12.098.
dc.relationS. M. Persson y I. Sharf, "Sampling-based A* algorithm for robot path-planning", International Journal of Robotics Research, vol. 33, núm. 13, pp. 1683-1708, nov. 2014, doi: 10.1177/0278364914547786.
dc.relationB. Fu et al., "An improved A* algorithm for the industrial robot path planning with high success rate and short length", Rob Auton Syst, vol. 106, pp. 26-37, ago. 2018, doi: 10.1016/j.robot.2018.04.007.
dc.relationE. Masehian y D. Sedighizadeh, "A multi-objective PSO-based algorithm for robot path planning", 2010.
dc.relationZ. Li, M. Oskarsson, y A. Heyden, "Detailed 3D human body reconstruction from multi-view images combining voxel super-resolution and learned implicit representation", Applied Intelligence, vol. 52, núm. 6, pp. 6739-6759, abr. 2022, doi: 10.1007/s10489-021-02783-8.
dc.relationB. Kennedy et al., "Lemur IIb: A robotic system for steep terrain access", Industrial Robot, vol. 33, núm. 4, pp. 265-269, 2006, doi: 10.1108/01439910610667872.
dc.relationA. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash, y B. Kennedy, "LEMUR 3: A Limbed Climbing Robot for Extreme Terrain Mobility in Space".
dc.relationT. Bretl, S. Rock, J.-C. Latombe, B. Kennedy, y H. Aghazarian, "LNCS 21 - Free-Climbing with a Multi-Use Robot".
dc.relationE. R. Bachmann, I. Duman, U. Y. Usta, R. B. Mcghee, X. P. Yun, y M. J. Zyda, "Orientation Tracking for Humans and Robots Using Inertial Sensors".
dc.relationX. Lin, J. Zhang, J. Shen, G. Fernandez, y D. W. Hong, "Optimization Based Motion Planning for Multi-Limbed Vertical Climbing Robots".
dc.relationC. Prados, M. Hernando, E. Gambao, y A. Brunete, "MoCLORA-An Architecture for Legged-and-Climbing Modular Bio-Inspired Robotic Organism", Biomimetics, vol. 8, núm. 1, p. 11, dic. 2022, doi: 10.3390/biomimetics8010011.
dc.relationJ. Zhang, X. Lin, y D. W. Hong, "Transition Motion Planning for Multi-Limbed Vertical Climbing Robots Using Complementarity Constraints", jun. 2021, [En línea]. Disponible en: http://arxiv.org/abs/2106.07127
dc.relationP. B. Williams, E. Sagraniching, B. Bennett, B. Singh, y A. Advisor: L B W B Tsai, "The Walking Robot Project".
dc.relationY. Tanaka et al., "SCALER: A Tough Versatile Quadruped Free-Climber Robot", jul. 2022, [En línea]. Disponible en: http://arxiv.org/abs/2207.01180
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleModelo de análisis cinemático en la escalada deportiva modalidad Boulder
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución