dc.contributorCortés Montañez, María Teresa
dc.contributorLizcano Valbuena, William Hernando
dc.contributorMoreno Piraján, Juan Carlos
dc.contributorGrupo de electroquímica
dc.creatorMoreno Gualtero, Cristian Camilo
dc.date.accessioned2023-01-27T15:33:49Z
dc.date.accessioned2023-09-07T00:38:51Z
dc.date.available2023-01-27T15:33:49Z
dc.date.available2023-09-07T00:38:51Z
dc.date.created2023-01-27T15:33:49Z
dc.date.issued2022-12-01
dc.identifierhttp://hdl.handle.net/1992/64288
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727585
dc.description.abstractPelículas de polipirrol (PPy) se sintetizaron a través del método de pulsos galvanostáticos haciendo uso de diferentes dopantes y co-dopantes: ácido p-toluensulfónico (pTS), 5,10,15,20-tetrakis(4-sulfonatofenil)porfirina (TPPS), su complejo de Cu(II) (CuTPPS) y puntos de carbono (CD) para evaluar la influencia de estos compuestos en las propiedades de carga del material resultante. Las técnicas utilizadas para evaluar el desempeño electroquímico fueron la voltametría cíclica (CV), ciclos galvanostáticos de carga y descarga (GCD) y espectroscopía de impedancia electroquímica (EIS); se realizaron ensayos de cronoamperometría (CA) para determinar el área electroactiva de las películas sintetizadas.
dc.description.abstractPolypyrrole (PPy) films were synthesized through galvanostatic pulse method with different dopants and co-dopants: p-toluenesulfonic acid (pTS), 5,10,15,20- tetrakis(4-sulfonatophenyl)porphyrin (TPPS), its Cu (II) complex (CuTPPS) and carbon dots (CD) to evaluate the influence of these compounds on the charge properties of the materials. The techniques used to evaluate electrochemical performance were cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) and electrochemical impedance spectroscopy (EIS). Additionally, observations were made through scanning electron microscopy (SEM) in order to determine morphological variations of the materials. The specific capacitances obtained were: PPy/PTSA/TPPS: 244 F/g; PPy/PTSA/CuTPPS: 237 F/g; PPy/PTSA/CuTPPS: 298 F/g y PPy/PTSA/CuTPPS/CD: 335 F/g at 0.5 mA/cm2 . The capacitance retention was performed through the GCD technique at 5 mA/cm2 , which did not show significant variation in the systems: PPy/PTSA/TPPS 92% up to 3000 cycles PPy/PTSA/CuTPPS: 99% up to 2000 cycles; PPy/ PTSA /TPPS/CD: 89% up to 3000 cycles and PPy/PTSA/CuTPPS/CD: 98% up to 2000 cycles.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationCovert, T.; Greenstone, M.; Knittel, C. R. Will We Ever Stop Using Fossil Fuels? Journal of Economic Perspectives 2016, 30 (1), 117-138. https://doi.org/10.1257/jep.30.1.117.
dc.relationJiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy and Environmental Materials 2019, 2 (1), 30-37. https://doi.org/10.1002/eem2.12028.
dc.relationShafiul Alam, M.; Al-Ismail, F. S.; Salem, A.; Abido, M. A. High-Level Penetration of Renewable Energy Sources into Grid Utility: Challenges and Solutions. IEEE Access 2020, 8, 190277-190299. https://doi.org/10.1109/ACCESS.2020.3031481.
dc.relationSchmietendorf, K.; Peinke, J.; Kamps, O. The Impact of Turbulent Renewable Energy Production on Power Grid Stability and Quality. European Physical Journal B 2017, 90 (11). https://doi.org/10.1140/epjb/e2017-80352-8.
dc.relationChoudhary, R. B.; Ansari, S.; Purty, B. Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J Energy Storage 2020, 29 (January), 101302. https://doi.org/10.1016/j.est.2020.101302.
dc.relationNamsheer, K.; Rout, C. S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv 2021, 11 (10), 5659-5697. https://doi.org/10.1039/d0ra07800j.
dc.relationCharriau, P. Global Energy Trends 2021 Edition - Enerdata; 2021.
dc.relationMaradin, D. Advantages and Disadvantages of Renewable Energy Sources Utilization. International Journal of Energy Economics and Policy 2021, 11 (3), 176-183. https://doi.org/10.32479/ijeep.11027.
dc.relationMaradin, D. Advantages and Disadvantages of Renewable Energy Sources Utilization. International Journal of Energy Economics and Policy 2021, 11 (3), 176-183. https://doi.org/10.32479/ijeep.11027.
dc.relationSun, J.; Cui, B.; Chu, F.; Yun, C.; He, M.; Li, L.; Song, Y. Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials 2018, 8 (7), 1-24. https://doi.org/10.3390/nano8070528.
dc.relationRashidi, S.; Esfahani, J. A.; Hormozi, F. Classifications of Porous Materials for Energy Applications. Encyclopedia of Smart Materials 2021, 774-785. https://doi.org/10.1016/B978-0-12-803581-8.11739-4.
dc.relationBerrueta, A.; Ursua, A.; Martin, I. S.; Eftekhari, A.; Sanchis, P. Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE Access 2019, 7, 50869-50896. https://doi.org/10.1109/ACCESS.2019.2908558.
dc.relationZhao, J.; Burke, A. F. Review on Supercapacitors: Technologies and Performance Evaluation. Journal of Energy Chemistry 2021, 59 (July 1994), 276-291. https://doi.org/10.1016/j.jechem.2020.11.013.
dc.relationFarag, M. S. Lithium-Ion Batteries: Modelling and State of Charge Estimation. 2013, 169.
dc.relationYu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications 2017, 1-355. https://doi.org/10.1201/B14671/ELECTROCHEMICAL-SUPERCAPACITORS-ENERGY-STORAGE-DELIVERY-AIPING-YU-VICTOR-CHABOT-JIUJUN-ZHANG.
dc.relationVandeginste, V. A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Applied Sciences (Switzerland) 2022, 12 (2). https://doi.org/10.3390/app12020862.
dc.relationChoi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q.; Lau, J.; Dunn, B. Achieving High Energy Density and High Power Density with Pseudocapacitive Materials. Nature Reviews Materials. Nature Research January 1, 2020, pp 5-19. https://doi.org/10.1038/s41578-019-0142-z.
dc.relationZhou, L.; Li, C.; Liu, X.; Zhu, Y.; Wu, Y.; van Ree, T. Metal Oxides in Supercapacitors; Elsevier Inc., 2018. https://doi.org/10.1016/b978-0-12-811167-3.00007-9.
dc.relationXue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 2019, 119 (8), 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593.
dc.relationJalal, N. I.; Ibrahim, R. I.; Oudah, M. K. A Review on Supercapacitors: Types and Components. J Phys Conf Ser 2021, 1973 (1). https://doi.org/10.1088/1742-6596/1973/1/012015.
dc.relationSha, Z.; Zhou, Y.; Huang, F.; Yang, W.; Yu, Y.; Zhang, J.; Wu, S.; Brown, S. A.; Peng, S.; Han, Z.; Wang, C. H. Carbon Fibre Electrodes for Ultra Long Cycle Life Pseudocapacitors by Engineering the Nano-Structure of Vertical Graphene and Manganese Dioxides. Carbon N Y 2021, 177, 260-270. https://doi.org/10.1016/j.carbon.2021.01.155.
dc.relationBarik, R.; Ingole, P. P. Challenges and Prospects of Metal Sulfide Materials for Supercapacitors. Curr Opin Electrochem 2020, 21, 327-334. https://doi.org/10.1016/j.coelec.2020.03.022.
dc.relationAbdel Maksoud, M. I. A.; Fahim, R. A.; Shalan, A. E.; Abd Elkodous, M.; Olojede, S. O.; Osman, A. I.; Farrell, C.; Al-Muhtaseb, A. H.; Awed, A. S.; Ashour, A. H.; Rooney, D. W. Advanced Materials and Technologies for Supercapacitors Used in Energy Conversion and Storage: A Review; Springer International Publishing, 2021; Vol. 19. https://doi.org/10.1007/s10311-020-01075-w.
dc.relationLiang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11 (5). https://doi.org/10.3390/nano11051248.
dc.relationZhang, C.; Xu, Y. T.; Sasaki, S. ichi; Wang, X. F. Supercapacitor Electrodes Based on Electropolymerized Protoporphyrins. Mater Today Energy 2021, 21, 100830. https://doi.org/10.1016/j.mtener.2021.100830.
dc.relationChen, B.; Xu, L.; Xie, Z.; Wong, W. Supercapacitor Electrodes Based on Metal-organic Compounds from the First Transition Metal Series. EcoMat 2021, 3 (3). https://doi.org/10.1002/eom2.12106.
dc.relationShi, Y.; Zhang, F.; Linhardt, R. J. Porphyrin-Based Compounds and Their Applications in Materials and Medicine. Dyes and Pigments 2021, 188 (August 2020), 109136. https://doi.org/10.1016/j.dyepig.2021.109136.
dc.relationMuzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renewable and Sustainable Energy Reviews. Elsevier Ltd March 1, 2019, pp 123-145. https://doi.org/10.1016/j.rser.2018.10.026.
dc.relationChoi, H.; Yoon, H. Nanostructured Electrode Materials for Electrochemical Capacitor Applications. Nanomaterials. MDPI AG June 2, 2015, pp 906-936. https://doi.org/10.3390/nano5020906.
dc.relationPalisoc, S.; Dungo, J. M.; Natividad, M. Low-Cost Supercapacitor Based on Multi-Walled Carbon Nanotubes and Activated Carbon Derived from Moringa Oleifera Fruit Shells. Heliyon 2020, 6 (1). https://doi.org/10.1016/j.heliyon.2020.e03202.
dc.relationOh, T.; Kim, M.; Choi, J.; Kim, J. Design of Graphitic Carbon Nitride Nanowires with Captured Mesoporous Carbon Spheres for EDLC Electrode Materials. Ionics (Kiel) 2018, 24 (12), 3957-3965. https://doi.org/10.1007/s11581-018-2544-0.
dc.relationMohd Abdah, M. A. A.; Azman, N. H. N.; Kulandaivalu, S.; Sulaiman, Y. Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Materials and Design. Elsevier Ltd January 15, 2020. https://doi.org/10.1016/j.matdes.2019.108199.
dc.relationWu, Z.; Zhu, Y.; Ji, X.; Banks, C. E. Transition Metal Oxides as Supercapacitor Materials; 2016; pp 317-344. https://doi.org/10.1007/978-3-319-26082-2_9.
dc.relationZhang, C.; Peng, Z.; Chen, Y.; Chen, H.; Zhang, B.; Cheng, H.; Wang, J.; Deng, M. Efficient Coupling of Semiconductors into Metallic MnO2@CoMn2O4 Heterostructured Electrode with Boosted Charge Transfer for High-Performance Supercapacitors. Electrochim Acta 2020, 347. https://doi.org/10.1016/j.electacta.2020.136246.
dc.relationPark, S.; Son, Y.; Heo, Y. Prospective Synthesis Approaches to Emerging Materials for Supercapacitor; Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-813794-9.00006-5.
dc.relationPang, A. L.; Arsad, A.; Ahmadipour, M. Synthesis and Factor Affecting on the Conductivity of Polypyrrole: A Short Review. Polym Adv Technol 2021, 32 (4), 1428-1454. https://doi.org/10.1002/pat.5201.
dc.relationYussuf, A.; Al-Saleh, M.; Al-Enezi, S.; Abraham, G. Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. Int J Polym Sci 2018, 2018. https://doi.org/10.1155/2018/4191747.
dc.relationKakaei, K.; Esrafili, M. D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors; 2019; Vol. 27. https://doi.org/10.1016/B978-0-12-814523-4.00009-5.
dc.relationChang, L.; Hang Hu, Y. Supercapacitors; 2018; Vol. 2-5. https://doi.org/10.1016/B978-0-12-809597-3.00247-9.
dc.relationShahryari, Z.; Gheisari, K.; Yeganeh, M.; Ramezanzadeh, B. Corrosion Mitigation Ability of Differently Synthesized Polypyrrole (PPy-FeCl3 & PPy-APS) Conductive Polymers Modified with Na2MoO4 on Mild Steel in 3.5% NaCl Solution: Comparative Study and Optimization. Corros Sci 2021, 193 (October), 109894. https://doi.org/10.1016/j.corsci.2021.109894.
dc.relationCastro, L. E. V.; Martínez, C. J. P.; del Castillo Castro, T.; Ortega, M. M. C.; Encinas, J. C. Chemical Polymerization of Pyrrole in the Presence of L-Serine or L-Glutamic Acid: Electrically Controlled Amoxicillin Release from Composite Hydrogel. J Appl Polym Sci 2015, 132 (15), 1-7. https://doi.org/10.1002/app.41804.
dc.relationFomo, G.; Waryo, T.; Feleni, U.; Baker, P.; Iwuoha, E. Electrochemical Polymerization. In Functional Polymers; Jafar Mazumder, M. A., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, 2019; pp 105-131. https://doi.org/10.1007/978-3-319-95987-0_3.
dc.relationLe, T. H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers (Basel) 2017, 9 (4). https://doi.org/10.3390/polym9040150.
dc.relationMa, Z.; Shi, W.; Yan, K.; Pan, L.; Yu, G. Doping Engineering of Conductive Polymer Hydrogels and Their Application in Advanced Sensor Technologies. Chem Sci 2019, 10 (25), 6232-6244. https://doi.org/10.1039/c9sc02033k.
dc.relationYang, C. Y.; Stoeckel, M. A.; Ruoko, T. P.; Wu, H. Y.; Liu, X.; Kolhe, N. B.; Wu, Z.; Puttisong, Y.; Musumeci, C.; Massetti, M.; Sun, H.; Xu, K.; Tu, D.; Chen, W. M.; Woo, H. Y.; Fahlman, M.; Jenekhe, S. A.; Berggren, M.;Fabiano, S. A High-Conductivity n-Type Polymeric Ink for Printed Electronics. Nat Commun 2021, 12 (1). https://doi.org/10.1038/s41467-021-22528-y.
dc.relationKaynak, A. Decay of Electrical Conductivity in P-Toluene Sulfonate Doped Polypyrrole Films. Fibers and Polymers 2009, 10 (5), 590-593. https://doi.org/10.1007/s12221-010-0590-y.
dc.relationAlva, S.; Utami, R. S.; Shyuan, L. K.; Puspasari, I.; Mohammad, A. B. SYNTHESIS AND CHARACTERIZATION OF TOLUENE SULFONIC ACID (TSA)-DOPED POLYPYRROLE NANOPARTICLES: EFFECTS OF DOPANT CONCENTRATIONS; 2016; Vol. 2. www.umb-intl-journal.com.
dc.relationDing, C.; Qian, X.; Yu, G.; An, X. Dopant Effect and Characterization of Polypyrrole-Cellulose Composites Prepared by in Situ Polymerization Process. Cellulose 2010, 17 (6), 1067-1077. https://doi.org/10.1007/s10570-010-9442-6.
dc.relationGirouard, D. Digital Commons @ Assumption University Porphyrins and Porphyrin Applications Porphyrins and Porphyrin Applications Derek Girouard Faculty Supervisor : Elizabeth Colby-Davie , Ph . D . Department of Biological and Physical Sciences A Thesis Submitted to F. 2021.
dc.relationHiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2017, 117 (4), 2910-3043. https://doi.org/10.1021/acs.chemrev.6b00427.
dc.relationGarcía-Pérez, C. A.; Menchaca-Campos, C.; García-Sánchez, M. A.; Vega-Cantú, Y. I.; Rodríguez-Pérez, O.; Uruchurtu, J. Supercapacitor Based on Graphene Oxide/Tetra(Para-Aminophenyl)Porphyrin/Nylon 66 Composite Electrode. Diam Relat Mater 2019, 96 (April), 44-51. https://doi.org/10.1016/j.diamond.2019.04.023.
dc.relationMin Park, J.; Lee, J. H.; Jang, W. D. Applications of Porphyrins in Emerging Energy Conversion Technologies. Coord Chem Rev 2020, 407, 213157. https://doi.org/10.1016/j.ccr.2019.213157.
dc.relationJurow, M.; Schuckman, A. E.; Batteas, J. D.; Drain, C. M. Porphyrins as Molecular Electronic Components of Functional Devices. Coord Chem Rev 2010, 254 (19-20), 2297-2310. https://doi.org/10.1016/j.ccr.2010.05.014.
dc.relationZaar, F.; Olsson, S.; Emanuelsson, R.; Strømme, M.; Sjödin, M. Characterization of a Porphyrin-Functionalized Conducting Polymer: A First Step towards Sustainable Electrocatalysis. Electrochim Acta 2022, 424. https://doi.org/10.1016/j.electacta.2022.140616.
dc.relationEsteves, C. H. A.; Iglesias, B. A.; Li, R. W. C.; Ogawa, T.; Araki, K.; Gruber, J. New Composite Porphyrin-Conductive Polymer Gas Sensors for Application in Electronic Noses. Sens Actuators B Chem 2014, 193, 136-141. https://doi.org/10.1016/j.snb.2013.11.022.
dc.relationCruz-Navarro, J. A.; Hernández-García, F.; Mendoza-Huizar, L. H.; Salazar-Pereda, V.; Cobos-Murcia, J. Á.; Colorado-Peralta, R.; Álvarez-Romero, G. A. Recent Advances in the Use of Transition-Metal Porphyrin and Phthalocyanine Complexes as Electro-Catalyst Materials on Modified Electrodes for Electroanalytical Sensing Applications. Solids 2021, 2 (2), 212-231. https://doi.org/10.3390/solids2020014.
dc.relationJohanson, U.; Marandi, M.; Sammelselg, V.; Tamm, J. Electrochemical Properties of Porphyrin-Doped Polypyrrole Films. Journal of Electroanalytical Chemistry 2005, 575 (2), 267-273. https://doi.org/10.1016/j.jelechem.2004.09.019.
dc.relationLiu, Y.; Roy, S.; Sarkar, S.; Xu, J.; Zhao, Y.; Zhang, J. A Review of Carbon Dots and Their Composite Materials for Electrochemical Energy Technologies. Carbon Energy 2021, 3 (5), 795-826. https://doi.org/10.1002/cey2.134.
dc.relationMansuriya, B. D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-an Updated Review (2018-2021). Nanomaterials 2021, 11 (10). https://doi.org/10.3390/nano11102525.
dc.relationCui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials. MDPI December 1, 2021. https://doi.org/10.3390/nano11123419.
dc.relationKhairol Anuar, N. K.; Tan, H. L.; Lim, Y. P.; So'aib, M. S.; Abu Bakar, N. F. A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications. Frontiers in Energy Research. Frontiers Media S.A. April 26, 2021. https://doi.org/10.3389/fenrg.2021.626549.
dc.relationFeng, Z.; Adolfsson, K. H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon Dot/Polymer Nanocomposites: From Green Synthesis to Energy, Environmental and Biomedical Applications. Sustainable Materials and Technologies. Elsevier B.V. September 1, 2021. https://doi.org/10.1016/j.susmat.2021.e00304.
dc.relationZhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H. Design and Preparation of a Ternary Composite of Graphene Oxide/Carbon Dots/Polypyrrole for Supercapacitor Application: Importance and Unique Role of Carbon Dots. Carbon N Y 2017, 115, 134-146. https://doi.org/10.1016/j.carbon.2017.01.005.
dc.relationElgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner's Guide to Cyclic Voltammetry. J Chem Educ 2018, 95 (2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361.
dc.relationP.S., J.; Sutrave, D. S. A Brief Study of Cyclic Voltammetry and Electrochemical Analysis. Int J Chemtech Res 2018, 11 (9), 77-88. https://doi.org/10.20902/ijctr.2018.110911.
dc.relationWang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M. E. Electrochemical Impedance Spectroscopy. Nature Reviews Methods Primers. Springer Nature December 1, 2021. https://doi.org/10.1038/s43586-021-00039-w.
dc.relationMei, B. A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C 2018, 122 (1), 194-206. https://doi.org/10.1021/acs.jpcc.7b10582.
dc.relationHaidekker, M. A. Frequency-Domain Analysis and Design Methods. In Linear Feedback Controls; Elsevier, 2020; pp 177-202. https://doi.org/10.1016/b978-0-12-818778-4.00020-0.
dc.relationBarzegar, F.; Dangbegnon, J. K.; Bello, A.; Momodu, D. Y.; Johnson, A. T. C.; Manyala, N. Effect of Conductive Additives to Gel Electrolytes on Activated Carbon-Based Supercapacitors. AIP Adv 2015, 5 (9). https://doi.org/10.1063/1.4931956.
dc.relationNegroiu, R.; Svasta, P.; Ionescu, C.; Vasile, A. Investigation of Supercapacitor's Impedance Based on Spectroscopic Measurements.
dc.relationScopus. Polypyrrole supercapacitor search.
dc.relationZhang, J.; Kong, L. bin; Li, H.; Luo, Y. C.; Kang, L. Synthesis of Polypyrrole Film by Pulse Galvanostatic Method and Its Application as Supercapacitor Electrode Materials. J Mater Sci 2010, 45 (7), 1947-1954. https://doi.org/10.1007/s10853-009-4186-0.
dc.relationKaraca, E.; Pekmez, N. Ö.; Pekmez, K. Galvanostatic Deposition of Polypyrrole in the Presence of Tartaric Acid for Electrochemical Supercapacitor. Electrochim Acta 2014, 147, 545-556. https://doi.org/10.1016/j.electacta.2014.09.136.
dc.relationZhang, E.; Liu, W.; Liu, X.; Zhao, Z.; Yang, Y. Pulse Electrochemical Synthesis of Polypyrrole/Graphene Oxide@graphene Aerogel for High-Performance Supercapacitor. RSC Adv 2020, 10 (20), 11966-11970. https://doi.org/10.1039/d0ra01181a.
dc.relationZhao, W.; Wang, W.; Peng, J.; Chen, T.; Jin, B.; Liu, S.; Huang, W.; Zhao, Q. Wrinkled Two-Dimensional Ultrathin Cu(Ii)-Porphyrin Framework Nanosheets Hybridized with Polypyrrole for Flexible All-Solid-State Supercapacitors. Dalton Transactions 2019, 48 (26), 9631-9638. https://doi.org/10.1039/c8dt05069d.
dc.relationDas, D.; Kurungot, S. Porphyrin-Based Conducting Polymer Hydrogel for Supercapacitor Application. Energy Technology 2020, 8 (6). https://doi.org/10.1002/ente.202000061.
dc.relationXie, Y.; Du, H. Electrochemical Capacitance of a Carbon Quantum Dots-Polypyrrole/Titania Nanotube Hybrid. RSC Adv 2015, 5 (109), 89689-89697. https://doi.org/10.1039/c5ra16538e.
dc.relationMantilla Rueda, J. D. Study of the Electrochemical Synthesis of a Hybrid Material of Polypyrrole. Undergraduate thesis, Universidad de los Andes, Bogotá, 2014.
dc.relationSandoval-Rojas, A. P.; Cortés, M. T.; Hurtado, J. Electrochemical Synthesis of Poly(3,4-Ethylenedioxythiophene) Doped with a New Bis(Pyrazolyl)Methane Disulfonate and Its Behavior towards Dopamine Detection. Journal of Electroanalytical Chemistry 2019, 837, 200-207. https://doi.org/10.1016/j.jelechem.2019.02.041.
dc.relationPérez-Torres, A. F.; González-Hernández, M.; Ortiz, P.; Cortés, M. T. Statistical Study of the Influence of Electrosynthesis Conditions on the Capacitance of Polypyrrole. ACS Omega 2022. https://doi.org/10.1021/acsomega.1c06843.
dc.relationCortés Aguillon, C. E. Síntesis Electroquímica de Películas de Polipirrol/La(OH)3 y Estudio de Sus Propiedades Como Capacitor. Master thesis, Universidad de los Andes, Bogotá, 2020.
dc.relationDíaz Moreno, M. A. Evaluación de Polipirrol Dopado Con Compuestos Tipo Porfirina Para La Aplicación En Supercapacitores. 2020.
dc.relationLim, A. C.; Kwon, H. J.; Jadhav, H. S.; Seo, J. G. Porphyrin-Stabilized CNT in Nanofiber via Non-Covalent Interaction for Enhanced Electrochemical Performance. Electrochim Acta 2018, 274, 112-120. https://doi.org/10.1016/j.electacta.2018.04.064.
dc.relationWang, Y.; Liu, X.; Han, X.; Godin, R.; Chen, J.; Zhou, W.; Jiang, C.; Thompson, J. F.; Mustafa, K. B.; Shevlin, S. A.; Durrant, J. R.; Guo, Z.; Tang, J. Unique Hole-Accepting Carbon-Dots Promoting Selective Carbon Dioxide Reduction Nearly 100% to Methanol by Pure Water. Nat Commun 2020, 11 (1). https://doi.org/10.1038/s41467-020-16227-3.
dc.relationLi, L.; Wu, J.; Yang, L.; Wang, H.; Xu, Y.; Shen, K. Fourier Transform Infrared Spectroscopy: An Innovative Method for the Diagnosis of Ovarian Cancer. Cancer Management and Research. Dove Medical Press Ltd 2021, pp 2389-2399. https://doi.org/10.2147/CMAR.S291906.
dc.relationQu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angewandte Chemie - International Edition 2012, 51 (49), 12215-12218. https://doi.org/10.1002/anie.201206791.
dc.relationJohn, B. K.; Abraham, T.; Mathew, B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. Journal of Fluorescence. Springer March 1, 2022, pp 449-471. https://doi.org/10.1007/s10895-021-02852-8.
dc.relationWang, Y.; Liu, X.; Han, X.; Godin, R.; Chen, J.; Zhou, W.; Jiang, C.; Thompson, J. F.; Mustafa, K. B.; Shevlin, S. A.; Durrant, J. R.; Guo, Z.; Tang, J. Unique Hole-Accepting Carbon-Dots Promoting Selective Carbon Dioxide Reduction Nearly 100% to Methanol by Pure Water. Nat Commun 2020, 11 (1). https://doi.org/10.1038/s41467-020-16227-3.
dc.relationSimões, E. F. C.; Leitão, J. M. M.; da Silva, J. C. G. E. Carbon Dots Prepared from Citric Acid and Urea as Fluorescent Probes for Hypochlorite and Peroxynitrite. Microchimica Acta 2016, 183 (5), 1769-1777. https://doi.org/10.1007/s00604-016-1807-6.
dc.relationStachowska, J. D.; Murphy, A.; Mellor, C.; Fernandes, D.; Gibbons, E. N.; Krysmann, M. J.; Kelarakis, A.; Burgaz, E.; Moore, J.; Yeates, S. G. A Rich Gallery of Carbon Dots Based Photoluminescent Suspensions and Powders Derived by Citric Acid/Urea. Sci Rep 2021, 11 (1). https://doi.org/10.1038/s41598-021-89984-w.
dc.relationGonzález-González, R. B.; González, L. T.; Madou, M.; Leyva-Porras, C.; Martinez-Chapa, S. O.; Mendoza, A. Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials 2022, 12 (3). https://doi.org/10.3390/nano12030298.
dc.relationHu, Q.; Gong, X.; Liu, L.; Choi, M. M. F. Characterization and Analytical Separation of Fluorescent Carbon Nanodots. Journal of Nanomaterials. Hindawi Limited 2017. https://doi.org/10.1155/2017/1804178.
dc.relationDemchenko, A. P.; Dekaliuk, M. O. Novel Fluorescent Carbonic Nanomaterials for Sensing and Imaging. Methods and Applications in Fluorescence. IOP Publishing Ltd December 1, 2013. https://doi.org/10.1088/2050-6120/1/4/042001.
dc.relationJohn, B. K.; Abraham, T.; Mathew, B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. Journal of Fluorescence. Springer March 1, 2022, pp 449-471. https://doi.org/10.1007/s10895-021-02852-8.
dc.relationGu, J.; Zhang, X.; Pang, A.; Yang, J. Facile Synthesis and Photoluminescence Characteristics of Blue-Emitting Nitrogen-Doped Graphene Quantum Dots. Nanotechnology 2016, 27 (16). https://doi.org/10.1088/0957-4484/27/16/165704.
dc.relationYang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Novel and Green Synthesis of High-Fluorescent Carbon Dots Originated from Honey for Sensing and Imaging. Biosens Bioelectron 2014, 60, 292-298. https://doi.org/10.1016/j.bios.2014.04.046.
dc.relationSingh, V.; Rawat, K. S.; Mishra, S.; Baghel, T.; Fatima, S.; John, A. A.; Kalleti, N.; Singh, D.; Nazir, A.; Rath, S. K.; Goel, A. Biocompatible Fluorescent Carbon Quantum Dots Prepared from Beetroot Extract for in Vivo Live Imaging in C. Elegans and BALB/c Mice. J Mater Chem B 2018, 6 (20), 3366-3371. https://doi.org/10.1039/c8tb00503f.
dc.relationLi, J. Y.; Liu, Y.; Shu, Q. W.; Liang, J. M.; Zhang, F.; Chen, X. P.; Deng, X. Y.; Swihart, M. T.; Tan, K. J. One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient up- and down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. Langmuir 2017, 33 (4), 1043-1050. https://doi.org/10.1021/acs.langmuir.6b04225.
dc.relationSagar Mittal, S.; Ramadas, G.; Vasanthmurali, N.; Madaneshwar, V. S.; Sathish Kumar, M.; Kothurkar, N. K. Carbon Quantum Dot-Polypyrrole Nanocomposite for Supercapacitor Electrodes. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd, 2019; Vol. 577. https://doi.org/10.1088/1757-899X/577/1/012194.
dc.relationKurdekar, A.; Chunduri, L. A. A.; Bulagonda, E. P.; Haleyurgirisetty, M. K.; Kamisetti, V.; Hewlett, I. K. Comparative Performance Evaluation of Carbon Dot-Based Paper Immunoassay on Whatman Filter Paper and Nitrocellulose Paper in the Detection of HIV Infection. Microfluid Nanofluidics 2016, 20 (7). https://doi.org/10.1007/s10404-016-1763-9.
dc.relationZhao, Y.; Liu, Y.; Ortega, E.; van der Bruggen, B. Prospects of Nanocomposite Membranes for Water Treatment by Electrodriven Membrane Processes. In Nanocomposite Membranes for Water and Gas Separation; Elsevier, 2019; pp 321-354. https://doi.org/10.1016/B978-0-12-816710-6.00013-4.
dc.relationPereira Ibaldo, A. Electrodeposition of Poly-3-Methyl Thiophene Using Pulsed Techniques: A Preliminary Study. Isr J Chem 2021. https://doi.org/10.1002/ijch.202100065.
dc.relationQi, K.; Qiu, Y.; Guo, X. Pulse Electrochemical Incorporation of Graphene Oxide into Polypyrrole Films for Supercapacitor Electrode Materials. Electrochim Acta 2014, 137, 685-692. https://doi.org/10.1016/j.electacta.2014.06.083.
dc.relationKarami, H.; Nezhad, A. R. Investigation of Pulse-Electropolymerization of Conductive Polypyrrole Nanostructures; 2013; Vol. 8. www.electrochemsci.org.
dc.relationPuerres, J.; Ortiz, P.; Cortés, M. T. Effect of Electrosynthesis Potential on Nucleation, Growth, Adhesion, and Electronic Properties of Polypyrrole Thin Films on Fluorine-Doped Tin Oxide (FTO). Polymers (Basel) 2021, 13 (15). https://doi.org/10.3390/polym13152419.
dc.relationLicona-Sánchez, T. D. J.; Álvarez-Romero, G. A.; Mendoza-Huizar, L. H.; Galán-Vidal, C. A.; Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Uruchurtu, J.; Juárez-García, J. M. Nucleation and Growth Kinetics of Electrodeposited Sulfate-Doped Polypyrrole: Determination of the Diffusion Coefficient of SO42- in the Polymeric Membrane. Journal of Physical Chemistry B 2010, 114 (30), 9737-9743. https://doi.org/10.1021/jp102676q.
dc.relationKarami, H.; Bigdeli, Z.; Matini, S. Pulsed Galvanostatic Synthesis of Zinc Oxide Nanostructures; 2016; Vol. 11. www.electrochemsci.org.
dc.relationCortés Aguillon, C. E. Síntesis Electroquímica de Películas de Polipirrol/La(OH)3 y Estudio de Sus Propiedades Como Capacitor. 2020.
dc.relationDu, X.; Hao, X.; Wang, Z.; Ma, X.; Guan, G.; Abuliti, A.; Ma, G.; Liu, S. Highly Stable Polypyrrole Film Prepared by Unipolar Pulse Electro-Polymerization Method as Electrode for Electrochemical Supercapacitor. Synth Met 2013, 175, 138-145. https://doi.org/10.1016/j.synthmet.2013.05.013.
dc.relationDubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous Polypyrrole Clusters Prepared by Electropolymerization for a High Performance Supercapacitor. J Mater Chem 2012, 22 (7), 3044-3052. https://doi.org/10.1039/c2jm14470k.
dc.relationPérez Torres, A. F. Estudio Del Efecto de Algunos Parámetros de Síntesis En La Pseudocapacitancia de Películas de Polipirrol Sintetizadas Electroquímicamente. instname:Universidad de los Andes 2017.
dc.relationFourati, N.; Blel, N.; Lattach, Y.; Ktari, N.; Zerrouki, C. Chemical and Biological Sensors from Conducting and Semiconducting Polymers. In Reference Module in Materials Science and Materials Engineering; Elsevier, 2016. https://doi.org/10.1016/b978-0-12-803581-8.01733-1.
dc.relationDejeu, J.; Taouil, A. E.; Rougeot, P.; Lakard, S.; Lallemand, F.; Lakard, B. Morphological and Adhesive Properties of Polypyrrole Films Synthesized by Sonoelectrochemical Technique. Synth Met 2010, 160 (23-24), 2540-2545. https://doi.org/10.1016/j.synthmet.2010.10.002.
dc.relationEt Taouil, A.; Lallemand, F.; Hihn, J. Y.; Hallez, L.; Moutarlier, V.; Blondeau-Patissier, V. Relation between Structure and Ions Mobility in Polypyrrole Electrosynthesized under High Frequency Ultrasound Irradiation. Electrochim Acta 2011, 58 (1), 67-75. https://doi.org/10.1016/j.electacta.2011.08.087.
dc.relationWei, H.; Wang, Y.; Guo, J.; Yan, X.; O'Connor, R.; Zhang, X.; Shen, N. Z.; Weeks, B. L.; Huang, X.; Wei, S.; Guo, Z. Electropolymerized Polypyrrole Nanocoatings on Carbon Paper for Electrochemical Energy Storage. ChemElectroChem 2015, 2 (1), 119-126. https://doi.org/10.1002/celc.201402258.
dc.relationLatonen, R. M.; Akieh, M. N.; Vavra, K.; Bobacka, J.; Ivaska, A. Ion Exchange Behavior of Polypyrrole Doped with Large Anions in Electrolytes Containing Mono- and Divalent Mmetal Ions. Electroanalysis 2013, 25 (4), 991-1004. https://doi.org/10.1002/elan.201200566.
dc.relationJakhar, P.; Shukla, M.; Singh, V. Investigation of Dopant Effect on the Electrochemical Performance of 1-D Polypyrrole Nanofibers Based Glucose Biosensor. Journal of Materials Science: Materials in Electronics 2019, 30 (4), 3563-3573. https://doi.org/10.1007/s10854-018-00634-w.
dc.relationAnsari, R. Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies; 2006; Vol. 3. http://www.e-journals.net.
dc.relationNurhayati; Suendo, V.; Alni, A.; Nugroho, A. A.; Majima, Y.; Lee, S.; Nugraha, Y. P.; Uekusa, H. Revealing the Real Size of a Porphyrin Molecule with Quantum Confinement Probing via Temperature-Dependent Photoluminescence Spectroscopy. Journal of Physical Chemistry A 2020, 124 (13), 2672-2682. https://doi.org/10.1021/acs.jpca.0c00665.
dc.relationLi, S.; Qiu, Y.; Guo, X. Influence of Doping Anions on the Ion Exchange Behavior of Polypyrrole. J Appl Polym Sci 2009, 114 (4), 2307-2314. https://doi.org/10.1002/app.30721.
dc.relationHandbook of Conducting Polymers, Fourth Edition - 2 Volume Set; Reynolds, J. R., Thompson, B. C., Skotheim, T. A., Eds.; CRC Press, 2019. https://doi.org/10.1201/b22233.
dc.relationCook, L.; Brewer, G.; Wong-Ng, W. Structural Aspects of Porphyrins for Functional Materials Applications. Crystals. MDPI AG July 15, 2017. https://doi.org/10.3390/cryst7070223.
dc.relationManaga, M.; Achadu, O. J.; Nyokong, T. Photophysical Studies of Graphene Quantum Dots - Pyrene-Derivatized Porphyrins Conjugates When Encapsulated within Pluronic F127 Micelles. Dyes and Pigments 2018, 148, 405-416. https://doi.org/10.1016/j.dyepig.2017.09.031.
dc.relationLiu, Y.; Roy, S.; Sarkar, S.; Xu, J.; Zhao, Y.; Zhang, J. A Review of Carbon Dots and Their Composite Materials for Electrochemical Energy Technologies. Carbon Energy. John Wiley and Sons Inc October 1, 2021, pp 795-826. https://doi.org/10.1002/cey2.134.
dc.relationZhang, H.; Wang, B.; Yu, X.; Li, J.; Shang, J.; Yu, J. Carbon Dots in Porous Materials: Host-Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition. Wiley-VCH Verlag October 26, 2020, pp 19390-19402. https://doi.org/10.1002/anie.202006545.
dc.relationSekretaryova, A. Powering Wearable Bioelectronic Devices. In Wearable Bioelectronics; Elsevier, 2019; pp 89-132. https://doi.org/10.1016/B978-0-08-102407-2.00005-9.
dc.relationFleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews. American Chemical Society July 22, 2020, pp 6738-6782. https://doi.org/10.1021/acs.chemrev.0c00170.
dc.relationCostentin, C.; Porter, T. R.; Savéant, J. M. How Do Pseudocapacitors Store Energy? Theoretical Analysis and Experimental Illustration. ACS Appl Mater Interfaces 2017, 9 (10), 8649-8658. https://doi.org/10.1021/acsami.6b14100.
dc.relationShivakumara, S.; Munichandraiah, N. In-Situ Preparation of Nanostructured [alfa]-MnO2/Polypyrrole Hybrid Composite Electrode Materials for High Performance Supercapacitor. J Alloys Compd 2019, 787, 1044-1050. https://doi.org/10.1016/j.jallcom.2019.02.131.
dc.relationArcila-Velez, M. R.; Roberts, M. E. Redox Solute Doped Polypyrrole for High-Charge Capacity Polymer Electrodes. Chemistry of Materials 2014, 26 (4), 1601-1607. https://doi.org/10.1021/cm403630h.
dc.relationTaer, E.; Agustino, A.; Farma, R.; Taslim, R.; Awitdrus; Paiszal, M.; Ira, A.; Yardi, S. D.; Sari, Y. P.; Yusra, H.; Nurjanah, S.; Hartati, S. D.; Aini, Z.; Setiadi, R. N. The Relationship of Surface Area to Cell Capacitance for Monolith Carbon Electrode from Biomass Materials for Supercapacitor Aplication. In Journal of Physics: Conference Series; Institute of Physics Publishing, 2018; Vol. 1116. https://doi.org/10.1088/1742-6596/1116/3/032040.
dc.relationLi, Y.; Meng, Y.; Xiao, M.; Liu, X.; Zhu, F.; Zhang, Y. The Surface Capacitance Behavior and Its Contribution to the Excellent Performance of Cobalt Ferrite/Carbon Anode in Lithium Storage. Journal of Materials Science: Materials in Electronics 2019, 30 (13), 12659-12668. https://doi.org/10.1007/s10854-019-01629-x.
dc.relationMoyseowicz, A.; Sliwak, A.; Gryglewicz, G. Influence of Structural and Textural Parameters of Carbon Nanofibers on Their Capacitive Behavior. J Mater Sci 2016, 51 (7), 3431-3439. https://doi.org/10.1007/s10853-015-9660-2.
dc.relationZhang, S.; Pan, N. Supercapacitors Performance Evaluation. Advanced Energy Materials. Wiley-VCH Verlag March 1, 2015. https://doi.org/10.1002/aenm.201401401.
dc.relationAhmed Khan, I.; Thekkekara, L.; Waqar, S.; Choudhry, N.; John, S. Supercapacitors Fabrication and Performance Evaluation Techniques. In Supercapacitors for the Next Generation; IntechOpen, 2022. https://doi.org/10.5772/intechopen.101748.
dc.relationMOHD ABID, M. A. 'AZAM; Radzi, M. I.; Mupit, M.; Osman, H.; Munawar, R. F.; Samat, K. F.; Mohd Suan, M. S.; Isomura, K.; Islam, M. R. Cyclic Voltammetry and Galvanostatic Charge-Discharge Analyses of Polyaniline/Graphene Oxide Nanocomposite Based Supercapacitor. Malaysian Journal on Composites Science and Manufacturing 2020, 3 (1), 14-26. https://doi.org/10.37934/mjcsm.3.1.1426.
dc.relationStoller, M. D.; Ruoff, R. S. Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors. Energy and Environmental Science. 2010, pp 1294-1301. https://doi.org/10.1039/c0ee00074d.
dc.relationPérez-Torres, A. F.; González-Hernández, M.; Ortiz, P.; Cortés, M. T. Statistical Study of the Influence of Electrosynthesis Conditions on the Capacitance of Polypyrrole. ACS Omega 2022. https://doi.org/10.1021/acsomega.1c06843.
dc.relationBrett, C. M. A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27 (5). https://doi.org/10.3390/molecules27051497.
dc.relationPadha, B.; Verma, S.; Mahajan, P.; Arya, S. Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications. Journal of Electrochemical Science and Technology. Korean Electrochemical Society 2022, pp 167-176. https://doi.org/10.33961/jecst.2021.01263.
dc.relationKelly, A. G.; Finn, D.; Harvey, A.; Hallam, T.; Coleman, J. N. All-Printed Capacitors from Graphene-BN-Graphene Nanosheet Heterostructures. Appl Phys Lett 2016, 109 (2). https://doi.org/10.1063/1.4958858.
dc.relationLaschuk, N. O.; Easton, E. B.; Zenkina, O. v. Reducing the Resistance for the Use of Electrochemical Impedance Spectroscopy Analysis in Materials Chemistry. RSC Advances. Royal Society of Chemistry August 8, 2021, pp 27925-27936. https://doi.org/10.1039/d1ra03785d.
dc.relationZhang, L.; Jiang, J.; Liu, M. H. Formation of Silica Nanotubes through a TPPS J Aggregates Template. Chinese Science Bulletin 2012, 57 (33), 4322-4327. https://doi.org/10.1007/s11434-012-5432-4.
dc.relationShrestha, B. K.; Ahmad, R.; Shrestha, S.; Park, C. H.; Kim, C. S. Globular Shaped Polypyrrole Doped Well-Dispersed Functionalized Multiwall Carbon Nanotubes/Nafion Composite for Enzymatic Glucose Biosensor Application. Sci Rep 2017, 7 (1). https://doi.org/10.1038/s41598-017-16541-9.
dc.relationDay, N. U.; Walter, M. G.; Wamser, C. C. Preparations and Electrochemical Characterizations of Conductive Porphyrin Polymers. Journal of Physical Chemistry C 2015, 119 (30), 17378-17388. https://doi.org/10.1021/acs.jpcc.5b02628.
dc.relationMás-Montoya, M.; Janssen, R. A. J. The Effect of H- and J-Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene-Pyridine-DPP Molecules for Bulk-Heterojunction Solar Cells. Adv Funct Mater 2017, 27 (16). https://doi.org/10.1002/adfm.201605779.
dc.relationGonçalves, R.; Paiva, R. S.; Lima, T. M.; Paixão, M. W.; Pereira, E. C. Carbon Nitride/Polypyrrole Composite Supercapacitor: Boosting Performance and Stability. Electrochim Acta 2021, 368. https://doi.org/10.1016/j.electacta.2020.137570.
dc.relationZaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W. W.; Voon, C. H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. In Procedia Engineering; Elsevier Ltd, 2017; Vol. 184, pp 469-477. https://doi.org/10.1016/j.proeng.2017.04.118.
dc.relationSharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) for Gas Sensing Application. Macromol Symp 2017, 376 (1). https://doi.org/10.1002/masy.201700006.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSíntesis electroquímica de películas de polipirrol-porfirina modificadas con puntos de carbono y evaluación de sus propiedades como supercapacitor
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución