dc.contributorGonzález Barrios, Andrés Fernando
dc.contributorAcevedo Castro, Dorian Armando
dc.contributorBurgos Beltrán, Juan Carlos
dc.contributorPorras Holguín, Niyireth Alicia
dc.contributorGrupo de Diseño de Productos y Procesos
dc.creatorHayek Orduz, Yasser
dc.date.accessioned2023-07-17T20:34:13Z
dc.date.accessioned2023-09-07T00:38:18Z
dc.date.available2023-07-17T20:34:13Z
dc.date.available2023-09-07T00:38:18Z
dc.date.created2023-07-17T20:34:13Z
dc.date.issued2023-05-30
dc.identifierhttp://hdl.handle.net/1992/68499
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727573
dc.description.abstractEl aumento en la esperanza de vida de la población mundial ha impulsado el descubrimiento de nuevas enfermedades relacionadas con el envejecimiento, como la enfermedad de Alzheimer (EA). Esto ha llevado a la comunidad científica a desarrollar estrategias efectivas de detección, prevención y tratamiento. Una de las enzimas involucradas en la patogénesis de esta enfermedad es la acetilcolinesterasa (AChE). Hasta la fecha, no se ha llevado a cabo una comprensión en profundidad de la dinámica de los sitios farmacóforicos proteína-ligando para diversas familias de compuestos inhibidores. En este estudio, hemos desarrollado un protocolo en cascada in-silico que busca llenar este vacío de conocimiento empleando varios métodos de Mecánica Molecular (MM). Se elaboraron un conjunto de modelos de farmacóforo basados en ligandos y en complejos para 9 familias de compuestos. Los modelos de farmacóforo basados en complejos se combinaron con el uso del operador lógico OR para generar 9 ensambles de modelos de farmacóforo. Estos ensambles contienen interacciones proteína-ligando cruciales, como pi-catión de Trp-86, y varias interacciones pi-pi con los residuos Tyr-341, Tyr-337, Tyr-124, y Tyr-72. Interesantemente, los 9 ensambles y modelos basados en ligando funcionaron de manera correcta exhibiendo valores de ROC-AUC mayores a 0.7. Los hallazgos proporcionados en este manuscrito tienen el potencial de ser útiles en campañas de cribado virtual para respaldar el diseño y descubrimiento de nuevos agentes terapéuticos contra la enzima acetilcolinesterasa u otros objetivos enzimáticos.
dc.description.abstractThe increase in life expectancy of the world's population has led to the discovery of new age-related diseases such as Alzheimer's disease (AD). This has motivated the scientific community to develop effective strategies for detection, prevention, and treatment. One of the enzymes involved in the pathogenesis of this disease is acetylcholinesterase (AChE). However, an in-depth understanding of the dynamics of protein-ligand pharmacophore sites for various families of inhibitory compounds has not been achieved to date. To fill this knowledge gap, we developed a cascade in-silico protocol that utilizes multiple Molecular Mechanics (MM) methods. A set of ligand-based and complex-based pharmacophore models was developed for nine inhibitor families. Complex-based pharmacophore models were combined using the OR logical operator to generate nine complex-based pharmacophore model ensembles. These ensembles contain crucial protein-ligand interactions, such as pi-cation with Trp-86, and several pi-pi interactions with residues Tyr-341, Tyr-337, Tyr-124, and Tyr-72. Interestingly, all nine ensembles and ligand-based models functioned correctly, exhibiting ROC-AUC values greater than 0.7. The findings presented in this study have the potential to support the design and discovery of new therapeutic agents against acetylcholinesterase enzyme or other enzyme targets using virtual screening (VS) campaigns.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.relationPrince, M. et al. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer's Res. Ther. 8, 1-13 (2016).
dc.relation2021 Alzheimer's disease facts and figures. Alzheimer's Dement. 17, 327-406 (2021).
dc.relationSilva, M. V. F. et al. Alzheimer's disease: risk factors and potentially protective measures. J. Biomed. Sci. 26, (2019).
dc.relationBreijyeh, Z. & Karaman, R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 25, (2020).
dc.relationEjaz, H. W., Wang, W. & Lang, M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int. J. Mol. Sci. 21, 1-33 (2020).
dc.relationXu, Y., Cheng, S., Sussman, J. L., Silman, I. & Jiang, H. Computational Studies on Acetylcholinesterases. Molecules 22, (2017).
dc.relationAmenta, F., Parnetti, L., Gallai, V. & Wallin, A. Treatment of cognitive dysfunction associated with Alzheimer's disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech. Ageing Dev. 122, 2025-2040 (2001).
dc.relationKomersová, A., Komers, K. & Zdrazilová, P. Kinetics of hydrolysis of acetylthiocholine and acetylcholine by cholinesterases. Chem. Biol. Interact. 157-158, 387-388 (2005).
dc.relationSingh, M. et al. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur. J. Med. Chem. 70, 165-188 (2013).
dc.relationAkhoon, B. A. et al. Discovery of a new donepezil-like acetylcholinesterase inhibitor for targeting Alzheimer's disease: Computational studies with biological validation. J. Chem. Inf. Model. 60, 4717-4729 (2020).
dc.relationZhang, X. J. et al. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ. 2002 98 9, 790-800 (2002).
dc.relationMoghadam, B., Ashouri, M., Roohi, H. & Karimi-jafari, M. H. Computational evidence of new putative allosteric sites in the acetylcholinesterase receptor. J. Mol. Graph. Model. 107, 107981 (2021).
dc.relationWlodek, S. T., Clark, T. W., Scott, L. R. & McCammon, J. A. Molecular Dynamics of Acetylcholinesterase Dimer Complexed with Tacrine. J. Am. Chem. Soc. 119, 9513-9522 (1997).
dc.relationLanger, T. & Hoffmann, R. D. Pharmacophores and Pharmacophore Searches. Pharmacophores and Pharmacophore Searches vol. 32 (Wiley, 2006).
dc.relationQing, X. et al. Pharmacophore modeling: Advances, Limitations, And current utility in drug discovery. J. Receptor. Ligand Channel Res. 7, 81-92 (2014).
dc.relationGao, W., Ma, X., Yang, H., Luan, Y. & Ai, H. Molecular engineering and activity improvement of acetylcholinesterase inhibitors: Insights from 3D-QSAR, docking, and molecular dynamics simulation studies. J. Mol. Graph. Model. 116, 108239 (2022).
dc.relationPérez-Sánchez, H. et al. Combined Structure and Ligand-Based Design of Selective Acetylcholinesterase Inhibitors. J. Chem. Inf. Model. 61, 467-480 (2021).
dc.relationGrossberg, G. T. Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease:: Getting On and Staying On. Curr. Ther. Res. Clin. Exp. 64, 216 (2003).
dc.relationH. Thany, S. & Tricoire-Leignel, H. Emerging Pharmacological Properties of Cholinergic Synaptic Transmission: Comparison between Mammalian and Insect Synaptic and Extrasynaptic Nicotinic Receptors. Curr. Neuropharmacol. 9, 706 (2011).
dc.relationWilkinson, D. G., Francis, P. T., Schwam, E. & Payne-Parrish, J. Cholinesterase Inhibitors Used in the Treatment of Alzheimer's Disease. Drugs Aging 2004 217 21, 453-478 (2012).
dc.relationNazim, M. et al. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Res. 45, 1455-1468 (2017).
dc.relationHicks, D. et al. Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J. Neurochem. 116, 742-746 (2011).
dc.relationBester, S. M. et al. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Sci. 28, 1106-1114 (2019).
dc.relationCheung, J. et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 55, 10282-10286 (2012).
dc.relationCheng, S., Song, W., Yuan, X. & Xu, Y. Gorge Motions of Acetylcholinesterase Revealed by Microsecond Molecular Dynamics Simulations. Sci. Reports 2017 71 7, 1-12 (2017).
dc.relationZhou, Y., Wang, S. & Zhang, Y. Catalytic Reaction Mechanism of Acetylcholinesterase Determined by Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations. J. Phys. Chem. B 114, 8817 (2010).
dc.relationZhang, Y., Kua, J. & McCammon, J. A. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. J. Am. Chem. Soc. 124, 10572-10577 (2002).
dc.relationDvir, H., Silman, I., Harel, M., Rosenberry, T. L. & Sussman, J. L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact. 187, 10 (2010).
dc.relationBranduardi, D., Gervasio, F. L., Cavalli, A., Recanatini, M. & Parrinello, M. The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human AChE gorge. J. Am. Chem. Soc. 127, 9147-9155 (2005).
dc.relationGalburt, E. A. & Tomko, E. J. Conformational selection and induced fit as a useful framework for molecular motor mechanisms. Biophys. Chem. 223, 11 (2017).
dc.relationHammes, G. G., Chang, Y. C. & Oas, T. G. Conformational selection or induced fit: A flux description of reaction mechanism. Proc. Natl. Acad. Sci. U. S. A. 106, 13737-13741 (2009).
dc.relationAnderson, A. C., O'Neil, R. H., Surti, T. S. & Stroud, R. M. Approaches to solving the rigid receptor problem by identifying a minimal set of flexible residues during ligand docking. Chem. Biol. 8, 445-457 (2001).
dc.relationKapoor, K., Thangapandian, S. & Tajkhorshid, E. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins. Chem. Sci. 13, 4150-4169 (2022).
dc.relationEvangelista Falcon, W., Ellingson, S. R., Smith, J. C. & Baudry, J. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed to Reproduce Known Ligand Binding? J. Phys. Chem. B 123, 5189-5195 (2019).
dc.relationOsguthorpe, D. J., Sherman, W. & Hagler, A. T. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem. Biol. Drug Des. 80, 182-193 (2012).
dc.relationSenapati, S., Bui, J. M. & McCammon, J. A. Induced fit in mouse acetylcholinesterase upon binding a femtomolar inhibitor: A molecular dynamics study. J. Med. Chem. 48, 8155-8162 (2005).
dc.relationMillard, C. B. et al. Reaction Products of Acetylcholinesterase and VX Reveal a Mobile Histidine in the Catalytic Triad. J. Am. Chem. Soc. 121, 9883-9884 (1999).
dc.relationBar-On, P. et al. Kinetic and Structural Studies on the Interaction of Cholinesterases with the Anti-Alzheimer Drug Rivastigmine. Biochemistry 41, 3555-3564 (2002).
dc.relationXu, Y. et al. Induced-fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structure-based drug design. Protein Sci. 17, 601 (2008).
dc.relationLu, C. & Li, A. P. Enzyme Inhibition in Drug Discovery and Development: The Good and the Bad. Enzyme Inhibition in Drug Discovery and Development: The Good and the Bad (Wiley, 2010). doi:10.1002/9780470538951.
dc.relationSchaller, D. et al. Next generation 3D pharmacophore modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1468 (2020).
dc.relationErtl, P., Schuffenhauer, A. & Renner, S. Chemoinformatics and Computational Chemical Biology. Life Sciences vol. 672 (Springer, 2011).
dc.relationFei, J., Zhou, L., Liu, T. & Tang, X. Y. Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Discovery of Novel Akt2 Inhibitors. Int. J. Med. Sci. 10, 265 (2013).
dc.relationTerry, A. V. & Buccafusco, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821-827 (2003).
dc.relationAkhoon, B. A. et al. Discovery of a new donepezil-like acetylcholinesterase inhibitor for targeting Alzheimer's disease: Computational studies with biological validation. J. Chem. Inf. Model. 60, 4717-4729 (2020).
dc.relationKokh, D. B. et al. TRAPP: A tool for analysis of Transient binding Pockets in Proteins. J. Chem. Inf. Model. 53, 1235-1252 (2013).
dc.relationYuan, J. H., Han, S. B., Richter, S., Wade, R. C. & Kokh, D. B. Druggability Assessment in TRAPP Using Machine Learning Approaches. J. Chem. Inf. Model. 60, 1685-1699 (2020).
dc.relationMihalovits, L. M., Ferenczy, G. G. & Keserü, G. M. Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations. J. Chem. Inf. Model. 60, 6579-6594 (2020).
dc.relationBurlingham, B. T. & Widlanski, T. S. An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot. J. Chem. Educ. 80, 214-218 (2003).
dc.relationDe Paris, R., Quevedo, C. V., Ruiz, D. D., Norberto De Souza, O. & Barros, R. C. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments. Comput. Intell. Neurosci. 2015, (2015).
dc.relationGaurav, A. & Gautam, V. Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies. J. Receptor. Ligand Channel Res. 7, 27-38 (2014).
dc.relationWessler, I., Michel-Schmidt, R. & Kirkpatrick, C. J. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine. Int. Immunopharmacol. 29, 27-30 (2015).
dc.relationLaskowski, R. A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13, 323-330 (1995).
dc.relationBienert, S. et al. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. (2017) doi:10.1093/nar/gkw1132.
dc.relationSousa da Silva, A. W. & Vranken, W. F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012 51 5, 1-8 (2012).
dc.relationMysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582-6594 (2012).
dc.relationRmsdByResidue - PyMOLWiki. https://pymolwiki.org/index.php/RmsdByResidue.
dc.relationPourshojaei, Y. et al. Phenoxyethyl Piperidine/Morpholine Derivatives as PAS and CAS Inhibitors of Cholinesterases: Insights for Future Drug Design. Sci. Reports 2019 91 9, 1-19 (2019).
dc.relationRaves, M. L. et al. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A. Nat. Struct. Biol. 1997 41 4, 57-63 (1997).
dc.relationKokh, D. B., Czodrowski, P., Rippmann, F. & Wade, R. C. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets. J. Chem. Theory Comput. 12, 4100-4113 (2016).
dc.relationKokh, D. B. et al. TRAPP: A tool for analysis of Transient binding Pockets in Proteins. J. Chem. Inf. Model. 53, 1235-1252 (2013).
dc.relationYuan, J. H., Han, S. B., Richter, S., Wade, R. C. & Kokh, D. B. Druggability Assessment in TRAPP Using Machine Learning Approaches. J. Chem. Inf. Model. 60, 1685-1699 (2020).
dc.relationCer, R. Z., Mudunuri, U., Stephens, R. & Lebeda, F. J. IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res. 37, W441 (2009).
dc.relationBag, A. DFT based Computational Methodology of IC50 Prediction. Curr. Comput. Aided. Drug Des. 17, 244-253 (2021).
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDynamic active site modeling for efficient drug design of human acetylcholinesterase inhibitors: an approach based on pharmacophore modeling and experimental data
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución