dc.contributorArbeláez Escalante, Pablo Andrés
dc.contributorValderrama Manrique, Mario Andrés
dc.contributorGiraldo Trujillo, Luis Felipe
dc.contributorCINFONIA
dc.creatorUsma Niño, Andrés Santiago
dc.date.accessioned2023-08-14T15:49:06Z
dc.date.accessioned2023-09-07T00:37:41Z
dc.date.available2023-08-14T15:49:06Z
dc.date.available2023-09-07T00:37:41Z
dc.date.created2023-08-14T15:49:06Z
dc.date.issued2023-06-05
dc.identifierhttp://hdl.handle.net/1992/69671
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727564
dc.description.abstractNeural activation decoding has several challenges. Neural activation is different for all people, and measurement methods such as functional magnetic resonance imaging (fMRI) are sensitive to external stimuli. In this paper, we reconstruct visual stimulus using the neural activation measured with fMRIs in four patients. We use an fMRI model to obtain a latent representation vector to guide a Latent Diffusion Model (LDM) to generate high-quality images. The fMRI latent vector trained to be similar to the latent vector in the image gives you general information about the original stimuli, such as color or texture, but retraining the encoding model during LDM training shows better-quality generated images. The final results have consistency between the color, textures, shapes, and, in some cases, semantic context with the original stimulus.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relationCasco C, Grieco A, Campana G, Corvino MP, Caputo G. Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans. Vision Res. 2005 Aug;45(18):2384-96. doi: 10.1016/j.visres.2005.02.022. Epub 2005 Apr 8. PMID: 15979464
dc.relationZ. Rakhimberdina, Q. Jodelet, X. Liu and T. Murata, Natural Image Reconstruction From fMRI Using Deep Learning: A Survey, Frontiers in Neuroscience, vol. 15, 2021. Available: 10.3389/fnins.2021.795488
dc.relation"Alzheimer's disease - Causes", nhs.uk, 2021. [Online]. Available: https://www.nhs.uk/conditions/alzheimers-disease/causes/#:~:text=Alzheimer%27s%20disease%20 is%20thought%20to,form%20tangles%20within%20brain%20cells..
dc.relationSeghier, M.L. et al. (2008) Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words, NeuroImage, 42(3), pp. 1226-1236. doi:10.1016/j.neuroimage.2008.05.029.
dc.relationMak JN, Wolpaw JR. Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Rev Biomed Eng. 2009;2:187-199. doi: 10.1109/RBME.2009.2035356. PMID: 20442804; PMCID: PMC2862632.
dc.relationGlover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011 Apr;22(2):133-9, vii. doi: 10.1016/j.nec.2010.11.001. PMID: 21435566; PMCID: PMC3073717.
dc.relationS. Song, T. Mukerji and J. Hou, "GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)", Mathematical Geosciences, vol. 53, no. 7, pp. 1413-1444, 2021. Available: 10.1007/s11004-021-09934-0.
dc.relationKarras, T., Laine, S. \& Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. (2019)
dc.relationZhu, J., Park, T., Isola, P. \& Efros, A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. (2020)
dc.relationToledo, R. & Antonelo, E. Face Reconstruction with Variational Autoencoder and Face Masks. {Anais Do Encontro Nacional De Inteligência Artificial E Computacional (ENIAC)}. pp. 536-547 (2021,11), https://doi.org/10.5753%252Feniac.2021.18282
dc.relationEsser, P., Rombach, R. \& Ommer, B. Taming Transformers for High-Resolution Image Synthesis. (2021)
dc.relationR. VanRullen and L. Reddy, Reconstructing faces from fMRI patterns using deep generative neural networks, Communications Biology, vol. 2, no. 1, 2019. Available: 10.1038/s42003-019-0438-y.
dc.relationShen, G. et al. (2019) End-to-end deep image reconstruction from human brain activity, Frontiers in Computational Neuroscience, 13. doi:10.3389/fncom.2019.00021.
dc.relationChen, Z., Qing, J., Xiang, T., Yue, W. \& Zhou, J. Seeing Beyond the Brain: Masked Modeling Conditioned Diffusion Model for Human Vision Decoding. {\em ArXiv}. (2022,11), https://arxiv.org/abs/2211.06956
dc.relationTakagi, Y. \& Nishimoto, S. High-resolution image reconstruction with latent diffusion models from human brain activity. {\em BioRxiv}. (2022), https://www.biorxiv.org/content/early/2022/11/21/2022.11.18.517004
dc.relationN. Chang, J. Pyles, A. Marcus, A. Gupta, M. Tarr and E. Aminoff, "BOLD5000, a public fMRI dataset while viewing 5000 visual images", Scientific Data, vol. 6, no. 1, 2019. Available: 10.1038/s41597-019-0052-3.
dc.relationPrafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. doi: 10.48550/ARXIV.2105.05233
dc.relation"BOLD5000", Bold5000-dataset.github.io. [Online]. Available: https://bold5000 dataset.github.io/website/index.html.
dc.relationZ. Wang, A. Bovik, H. Sheikh and E. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity", IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. Available: 10.1109/tip.2003.819861.
dc.relationFernando A, Fardo, Victor H. Conforto, Francisco C. de Oliveira, Paulo S. Rodrigues. "A Formal Evaluation of PSNR as Quality Measurement Parameter for Image Segmentation Algorithms". airXv. 2016. Available: 10.48550/ARXIV.1605.07116
dc.relationRamesh, A. et al. (2022) Hierarchical text-conditional image generation with clip latents, arXiv.org. Available at: https://doi.org/10.48550/arXiv.2204.06125 (Accessed: November 30, 2022).
dc.relationRombach, R. et al. (2022) High-resolution image synthesis with Latent Diffusion Models, arXiv.org. Available at: https://arxiv.org/abs/2112.10752 (Accessed: November 30, 2022).
dc.relationNichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I. \& Chen, M. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. (2022)
dc.relationHo, J. \& Salimans, T. Classifier-Free Diffusion Guidance. (2022)
dc.relationBredell, G., Flouris, K., Chaitanya, K., Erdil, E. \& Konukoglu, E. Explicitly Minimizing the Blur Error of Variational Autoencoders. {\em The Eleventh International Conference On Learning Representations }. (2023), https://openreview.net/forum?id=9krnQ-ue9M
dc.relationHuff T, Mahabadi N, Tadi P. Neuroanatomy, Visual Cortex. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 29494110.
dc.relationPatel A, Biso GMNR, Fowler JB. Neuroanatomy, Temporal Lobe. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519512/
dc.relationP.E. Roland, B. Gulyás, Visual imagery and visual representation, Trends in Neurosciences,Volume 17, Issue 7, 1994, Pages 281-287, ISSN 0166-2236, https://doi.org/10.1016/0166-2236(94)90057-4. (https://www.sciencedirect.com/science/article/pii/0166223694900574)
dc.relationCaminero F, Cascella M. Neuroanatomy, Mesencephalon Midbrain. [Updated 2022 Oct 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551509/
dc.relationIreland AC, Carter IB. Neuroanatomy, Optic Chiasm. [Updated 2022 May 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542287/
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleReconstruction of natural images from fMRI using BOLD5000
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución