dc.contributor | Arbeláez Escalante, Pablo Andrés | |
dc.contributor | Valderrama Manrique, Mario Andrés | |
dc.contributor | Giraldo Trujillo, Luis Felipe | |
dc.contributor | CINFONIA | |
dc.creator | Usma Niño, Andrés Santiago | |
dc.date.accessioned | 2023-08-14T15:49:06Z | |
dc.date.accessioned | 2023-09-07T00:37:41Z | |
dc.date.available | 2023-08-14T15:49:06Z | |
dc.date.available | 2023-09-07T00:37:41Z | |
dc.date.created | 2023-08-14T15:49:06Z | |
dc.date.issued | 2023-06-05 | |
dc.identifier | http://hdl.handle.net/1992/69671 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727564 | |
dc.description.abstract | Neural activation decoding has several challenges. Neural activation is different for all people, and measurement methods such as functional magnetic resonance imaging (fMRI) are sensitive to external stimuli. In this paper, we reconstruct visual stimulus using the neural activation measured with fMRIs in four patients. We use an fMRI model to obtain a latent representation vector to guide a Latent Diffusion Model (LDM) to generate high-quality images. The fMRI latent vector trained to be similar to the latent vector in the image gives you general information about the original stimuli, such as color or texture, but retraining the encoding model during LDM training shows better-quality generated images. The final results have consistency between the color, textures, shapes, and, in some cases, semantic context with the original stimulus. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | Casco C, Grieco A, Campana G, Corvino MP, Caputo G. Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans. Vision Res. 2005 Aug;45(18):2384-96. doi: 10.1016/j.visres.2005.02.022. Epub 2005 Apr 8. PMID: 15979464 | |
dc.relation | Z. Rakhimberdina, Q. Jodelet, X. Liu and T. Murata, Natural Image Reconstruction From fMRI Using Deep Learning: A Survey, Frontiers in Neuroscience, vol. 15, 2021. Available: 10.3389/fnins.2021.795488 | |
dc.relation | "Alzheimer's disease - Causes", nhs.uk, 2021. [Online]. Available: https://www.nhs.uk/conditions/alzheimers-disease/causes/#:~:text=Alzheimer%27s%20disease%20
is%20thought%20to,form%20tangles%20within%20brain%20cells.. | |
dc.relation | Seghier, M.L. et al. (2008) Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words, NeuroImage, 42(3), pp. 1226-1236. doi:10.1016/j.neuroimage.2008.05.029. | |
dc.relation | Mak JN, Wolpaw JR. Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Rev Biomed Eng. 2009;2:187-199. doi: 10.1109/RBME.2009.2035356. PMID: 20442804; PMCID: PMC2862632. | |
dc.relation | Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011 Apr;22(2):133-9, vii. doi: 10.1016/j.nec.2010.11.001. PMID: 21435566; PMCID: PMC3073717. | |
dc.relation | S. Song, T. Mukerji and J. Hou, "GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)", Mathematical Geosciences, vol. 53, no. 7, pp. 1413-1444, 2021. Available: 10.1007/s11004-021-09934-0. | |
dc.relation | Karras, T., Laine, S. \& Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. (2019) | |
dc.relation | Zhu, J., Park, T., Isola, P. \& Efros, A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. (2020) | |
dc.relation | Toledo, R. & Antonelo, E. Face Reconstruction with Variational Autoencoder and Face Masks. {Anais Do Encontro Nacional De Inteligência Artificial E Computacional (ENIAC)}. pp. 536-547 (2021,11), https://doi.org/10.5753%252Feniac.2021.18282 | |
dc.relation | Esser, P., Rombach, R. \& Ommer, B. Taming Transformers for High-Resolution Image Synthesis. (2021) | |
dc.relation | R. VanRullen and L. Reddy, Reconstructing faces from fMRI patterns using deep generative neural networks, Communications Biology, vol. 2, no. 1, 2019. Available: 10.1038/s42003-019-0438-y. | |
dc.relation | Shen, G. et al. (2019) End-to-end deep image reconstruction from human brain activity, Frontiers in Computational Neuroscience, 13. doi:10.3389/fncom.2019.00021. | |
dc.relation | Chen, Z., Qing, J., Xiang, T., Yue, W. \& Zhou, J. Seeing Beyond the Brain: Masked Modeling Conditioned Diffusion Model for Human Vision Decoding. {\em ArXiv}. (2022,11), https://arxiv.org/abs/2211.06956 | |
dc.relation | Takagi, Y. \& Nishimoto, S. High-resolution image reconstruction with latent diffusion models from human brain activity. {\em BioRxiv}. (2022), https://www.biorxiv.org/content/early/2022/11/21/2022.11.18.517004 | |
dc.relation | N. Chang, J. Pyles, A. Marcus, A. Gupta, M. Tarr and E. Aminoff, "BOLD5000, a public fMRI dataset while viewing 5000 visual images", Scientific Data, vol. 6, no. 1, 2019. Available: 10.1038/s41597-019-0052-3. | |
dc.relation | Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. doi: 10.48550/ARXIV.2105.05233 | |
dc.relation | "BOLD5000", Bold5000-dataset.github.io. [Online]. Available: https://bold5000 dataset.github.io/website/index.html. | |
dc.relation | Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, "Image Quality Assessment: From Error Visibility to Structural Similarity", IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. Available: 10.1109/tip.2003.819861. | |
dc.relation | Fernando A, Fardo, Victor H. Conforto, Francisco C. de Oliveira, Paulo S. Rodrigues. "A Formal Evaluation of PSNR as Quality Measurement Parameter for Image Segmentation Algorithms". airXv. 2016. Available: 10.48550/ARXIV.1605.07116 | |
dc.relation | Ramesh, A. et al. (2022) Hierarchical text-conditional image generation with clip latents, arXiv.org. Available at: https://doi.org/10.48550/arXiv.2204.06125 (Accessed: November 30, 2022). | |
dc.relation | Rombach, R. et al. (2022) High-resolution image synthesis with Latent Diffusion Models, arXiv.org. Available at: https://arxiv.org/abs/2112.10752 (Accessed: November 30, 2022). | |
dc.relation | Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I. \& Chen, M. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. (2022) | |
dc.relation | Ho, J. \& Salimans, T. Classifier-Free Diffusion Guidance. (2022) | |
dc.relation | Bredell, G., Flouris, K., Chaitanya, K., Erdil, E. \& Konukoglu, E. Explicitly Minimizing the Blur Error of Variational Autoencoders. {\em The Eleventh International Conference On Learning Representations }. (2023), https://openreview.net/forum?id=9krnQ-ue9M | |
dc.relation | Huff T, Mahabadi N, Tadi P. Neuroanatomy, Visual Cortex. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. PMID: 29494110. | |
dc.relation | Patel A, Biso GMNR, Fowler JB. Neuroanatomy, Temporal Lobe. [Updated 2022 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519512/ | |
dc.relation | P.E. Roland, B. Gulyás, Visual imagery and visual representation, Trends in Neurosciences,Volume 17, Issue 7, 1994, Pages 281-287, ISSN 0166-2236, https://doi.org/10.1016/0166-2236(94)90057-4.
(https://www.sciencedirect.com/science/article/pii/0166223694900574) | |
dc.relation | Caminero F, Cascella M. Neuroanatomy, Mesencephalon Midbrain. [Updated 2022 Oct 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551509/ | |
dc.relation | Ireland AC, Carter IB. Neuroanatomy, Optic Chiasm. [Updated 2022 May 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542287/ | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Reconstruction of natural images from fMRI using BOLD5000 | |
dc.type | Trabajo de grado - Maestría | |