dc.contributorBocarejo Suescún, Juan Pablo
dc.contributorMorales Betancourt, Ricardo
dc.contributorOrtíz Carrascal, María Fernanda
dc.contributorZarama Valenzuela, Sofía
dc.contributorGrupo de sostenibilidad urbana y regional (SUR)
dc.creatorArroyo Cruzco, Laura Lizzette
dc.date.accessioned2023-07-21T13:05:55Z
dc.date.accessioned2023-09-07T00:37:10Z
dc.date.available2023-07-21T13:05:55Z
dc.date.available2023-09-07T00:37:10Z
dc.date.created2023-07-21T13:05:55Z
dc.date.issued2023-05-29
dc.identifierhttp://hdl.handle.net/1992/68629
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727552
dc.description.abstractLa electrificación del transporte público es una realidad extendida a nivel mundial. Por tanto, entender el comportamiento de este tipo de tecnología se hace cada vez más importante. Este estudio utiliza los datos de operación de 296 buses eléctricos en la ciudad de Bogotá para estimar su rendimiento energético. Para esto, se utiliza un modelo de consumo de energía de buses eléctricos a batería teórico y un modelo a partir de datos de operación. Adicionalmente, se presenta un modelo de potenciación de gradiente que permite calcular la importancia de cada una de las variables de interés en el modelo. El rendimiento energético promedio de los buses eléctricos de Bogotá obtenido en este estudio es de 1.20 kW/Km con una desviación estándar de 0.45kW/Km. Asimismo, se identifican que los factores que más influyen en el rendimiento energético de este tipo de buses son la velocidad, la distancia de la ruta, la carga de pasajeros y el estado de carga de la batería. Estos descubrimientos sientan las bases adecuadas para futuras investigaciones acerca de la sustitución de la flota de buses, la implementación de la infraestructura de carga y la priorización de rutas con buses eléctricos a batería.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationTransmilenio S.A. (11 de 10 de 2021). Datos Abiertos Bogotá. Obtenido de https://datosabiertos.bogota.gov.co/dataset/buses-del-sistema-integrado-de-transporte-publico-en-operacion
dc.relationPNUMA (2022). Sistemas de transporte público de autobuses eléctricos en la región de América Latina y el Caribe. Reporte de estado del arte y conceptos básicos.
dc.relationErcan, & Tatari, O. (2015). hybrid life cycle assessment of public transportation buses with alternative fuel options. The International Journal of Life Cycle Assessment, 20(9), 1213-1231. https://doi.org/10.1007/s11367-015-0927-2
dc.relationGirardi, Gargiulo, A., & Brambilla, P. C. (2015). comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. The International Journal of Life Cycle Assessment, 20(8), 1127-1142. https://doi.org/10.1007/s11367-015-0903-x
dc.relationHawkins, Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53-64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
dc.relationHelmers, Dietz, J., & Hartard, S. (2017). Electric car life cycle assessment based on real-world mileage and the electric conversion scenario. The International Journal of Life Cycle Assessment, 22(1), 15-30. https://doi.org/10.1007/s11367-015-0934-3
dc.relationLajunen, & Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy (Oxford), 106, 329-342. https://doi.org/10.1016/j.energy.2016.03.075
dc.relationInternational Energy Agency, 2016. CO2 Emissions from Fuel Combustion 2016, 533 pp.
dc.relationUmweltbundesamt, 2018. Annual greenhouse gas emissions in Germany https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/emissionsquellen#textpart-1
dc.relationHorton, Schnell, J. L., Peters, D. R., Wong, D. C., Lu, X., Gao, H., Zhang, H., & Kinney, P. L. (2021). Effect of adoption of electric vehicles on public health and air pollution in China: a modelling study. The Lancet. Planetary Health, 5, S8-S8. https://doi.org/10.1016/S2542-5196(21)00092-9
dc.relationHannah Ritchie and Max Roser (2017) - "Air Pollution". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/air-pollution' [Online Resource]
dc.relationAyelén Portaluppi (2020). Crecen los buses eléctricos en Latinoamérica: nuevas cifras en detalle, país por país- https://portalmovilidad.com/crecen-los-buses-electricos-en-latinoamerica-las-cifras-en-detalle-pais-por-pais/
dc.relationHe, Zhang, S., Ke, W., Zheng, Y., Zhou, B., Liang, X., & Wu, Y. (2018). Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. Journal of Cleaner Production, 171, 714-722. https://doi.org/10.1016/j.jclepro.2017.10.017
dc.relationVepsäläinen, Kivekäs, K., Otto, K., Lajunen, A., & Tammi, K. (2018). Development and validation of energy demand uncertainty model for electric city buses. Transportation Research. Part D, Transport and Environment, 63, 347-361. https://doi.org/10.1016/j.trd.2018.06.004
dc.relationSu, Jiang, L., & Huang, Y. (2023). Design of Electric Bus Transit Routes with Charging Stations under Demand Uncertainty. Energies (Basel), 16(4), 1848. https://doi.org/10.3390/en16041848
dc.relationSoylu. (2014). The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses. Applied Energy, 135, 472-482. https://doi.org/10.1016/j.apenergy.2014.08.102
dc.relationDe Abreu e Silva, Moura, F., Garcia, B., & Vargas, R. (2015). Influential vectors in fuel consumption by an urban bus operator: Bus route, driver behavior or vehicle type? Transportation Research. Part D, Transport and Environment, 38, 94-104. https://doi.org/10.1016/j.trd.2015.04.003
dc.relationKivekäs, Lajunen, A., Vepsäläinen, J., & Tammi, K. (2018). City bus powertrain comparison: Driving cycle variation and passenger load sensitivity analysis. Energies (Basel), 11(7), 1755-. https://doi.org/10.3390/en11071755
dc.relationLiu, Wang, L., Zeng, Z., & Bie, Y. (2022). Optimal charging plan for electric bus considering time-of-day electricity tariff. Journal of Intelligent and Connected Vehicles, 5(2), 123-137. https://doi.org/10.1108/JICV-04-2022-0008
dc.relationKontou, & Miles, J. (2015). Electric Buses: Lessons to be Learnt from the Milton Keynes Demonstration Project. Procedia Engineering, 118, 1137-1144. https://doi.org/10.1016/j.proeng.2015.08.455
dc.relationGao, Lin, Z., LaClair, T. J., Liu, C., Li, J.-M., Birky, A. K., & Ward, J. (2017). Battery capacity and recharging needs for electric buses in city transit service. Energy (Oxford), 122(C), 588-600. https://doi.org/10.1016/j.energy.2017.01.101
dc.relationInternational Energy Agency (2021). Global energy review: CO2 emissions in 2021. https://www.iea.org
dc.relationD. Hall, N. Lutsey (2018). Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions. The International Council of Clean Transportation
dc.relationF. Vicente, O. Delgado, R. Muncrief (2015). Heavy-duty vehicle fuel-efficiency simulation: a comparison of US and EU tools The International Council of Clean Transportation
dc.relationG.M.A. Burnham (2019). Life-cycle emissions and costs of medium- and heavy-duty vehicles in Colorado
dc.relationLe Quyen Luu, Eleonora Riva Sanseverino, Maurizio Cellura, Hoai-Nam Nguyen, Thanh Mai Nguyen, Hong Anh Nguyen (2022). Comparative life cycle impact assessment of electric and conventional bus in Vietnam. https://doi.org/10.1016/j.seta.2022.102873.
dc.relationPengshun Li, Yuhang Zhang, Yi Zhang, Yi Zhang, Kai Zhang (2021). Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data. https://doi.org/10.1016/j.apenergy.2021.117204.
dc.relationJunyu Jiang, Yuanbin Yu, Haitao Min, Qiming Cao, Weiyi Sun, Zhaopu Zhang, Chunqi Luo (2023). Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression. https://doi.org/10.1016/j.energy.2022.125866.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleFactores influyentes en el consumo de energía de los buses eléctricos: El caso de Bogotá
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución