dc.contributor | Bocarejo Suescún, Juan Pablo | |
dc.contributor | Morales Betancourt, Ricardo | |
dc.contributor | Ortíz Carrascal, María Fernanda | |
dc.contributor | Zarama Valenzuela, Sofía | |
dc.contributor | Grupo de sostenibilidad urbana y regional (SUR) | |
dc.creator | Arroyo Cruzco, Laura Lizzette | |
dc.date.accessioned | 2023-07-21T13:05:55Z | |
dc.date.accessioned | 2023-09-07T00:37:10Z | |
dc.date.available | 2023-07-21T13:05:55Z | |
dc.date.available | 2023-09-07T00:37:10Z | |
dc.date.created | 2023-07-21T13:05:55Z | |
dc.date.issued | 2023-05-29 | |
dc.identifier | http://hdl.handle.net/1992/68629 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727552 | |
dc.description.abstract | La electrificación del transporte público es una realidad extendida a nivel mundial. Por tanto, entender el comportamiento de este tipo de tecnología se hace cada vez más importante. Este estudio utiliza los datos de operación de 296 buses eléctricos en la ciudad de Bogotá para estimar su rendimiento energético. Para esto, se utiliza un modelo de consumo de energía de buses eléctricos a batería teórico y un modelo a partir de datos de operación. Adicionalmente, se presenta un modelo de potenciación de gradiente que permite calcular la importancia de cada una de las variables de interés en el modelo. El rendimiento energético promedio de los buses eléctricos de Bogotá obtenido en este estudio es de 1.20 kW/Km con una desviación estándar de 0.45kW/Km. Asimismo, se identifican que los factores que más influyen en el rendimiento energético de este tipo de buses son la velocidad, la distancia de la ruta, la carga de pasajeros y el estado de carga de la batería. Estos descubrimientos sientan las bases adecuadas para futuras investigaciones acerca de la sustitución de la flota de buses, la implementación de la infraestructura de carga y la priorización de rutas con buses eléctricos a batería. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | Transmilenio S.A. (11 de 10 de 2021). Datos Abiertos Bogotá. Obtenido de https://datosabiertos.bogota.gov.co/dataset/buses-del-sistema-integrado-de-transporte-publico-en-operacion | |
dc.relation | PNUMA (2022). Sistemas de transporte público de autobuses eléctricos en la región de América Latina y el Caribe. Reporte de estado del arte y conceptos básicos. | |
dc.relation | Ercan, & Tatari, O. (2015). hybrid life cycle assessment of public transportation buses with alternative fuel options. The International Journal of Life Cycle Assessment, 20(9), 1213-1231. https://doi.org/10.1007/s11367-015-0927-2 | |
dc.relation | Girardi, Gargiulo, A., & Brambilla, P. C. (2015). comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study. The International Journal of Life Cycle Assessment, 20(8), 1127-1142. https://doi.org/10.1007/s11367-015-0903-x | |
dc.relation | Hawkins, Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53-64. https://doi.org/10.1111/j.1530-9290.2012.00532.x | |
dc.relation | Helmers, Dietz, J., & Hartard, S. (2017). Electric car life cycle assessment based on real-world mileage and the electric conversion scenario. The International Journal of Life Cycle Assessment, 22(1), 15-30. https://doi.org/10.1007/s11367-015-0934-3 | |
dc.relation | Lajunen, & Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy (Oxford), 106, 329-342. https://doi.org/10.1016/j.energy.2016.03.075 | |
dc.relation | International Energy Agency, 2016. CO2 Emissions from Fuel Combustion 2016, 533 pp. | |
dc.relation | Umweltbundesamt, 2018. Annual greenhouse gas emissions in Germany https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/emissionsquellen#textpart-1 | |
dc.relation | Horton, Schnell, J. L., Peters, D. R., Wong, D. C., Lu, X., Gao, H., Zhang, H., & Kinney, P. L. (2021). Effect of adoption of electric vehicles on public health and air pollution in China: a modelling study. The Lancet. Planetary Health, 5, S8-S8. https://doi.org/10.1016/S2542-5196(21)00092-9 | |
dc.relation | Hannah Ritchie and Max Roser (2017) - "Air Pollution". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/air-pollution' [Online Resource] | |
dc.relation | Ayelén Portaluppi (2020). Crecen los buses eléctricos en Latinoamérica: nuevas cifras en detalle, país por país- https://portalmovilidad.com/crecen-los-buses-electricos-en-latinoamerica-las-cifras-en-detalle-pais-por-pais/ | |
dc.relation | He, Zhang, S., Ke, W., Zheng, Y., Zhou, B., Liang, X., & Wu, Y. (2018). Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. Journal of Cleaner Production, 171, 714-722. https://doi.org/10.1016/j.jclepro.2017.10.017 | |
dc.relation | Vepsäläinen, Kivekäs, K., Otto, K., Lajunen, A., & Tammi, K. (2018). Development and validation of energy demand uncertainty model for electric city buses. Transportation Research. Part D, Transport and Environment, 63, 347-361. https://doi.org/10.1016/j.trd.2018.06.004 | |
dc.relation | Su, Jiang, L., & Huang, Y. (2023). Design of Electric Bus Transit Routes with Charging Stations under Demand Uncertainty. Energies (Basel), 16(4), 1848. https://doi.org/10.3390/en16041848 | |
dc.relation | Soylu. (2014). The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses. Applied Energy, 135, 472-482. https://doi.org/10.1016/j.apenergy.2014.08.102 | |
dc.relation | De Abreu e Silva, Moura, F., Garcia, B., & Vargas, R. (2015). Influential vectors in fuel consumption by an urban bus operator: Bus route, driver behavior or vehicle type? Transportation Research. Part D, Transport and Environment, 38, 94-104. https://doi.org/10.1016/j.trd.2015.04.003 | |
dc.relation | Kivekäs, Lajunen, A., Vepsäläinen, J., & Tammi, K. (2018). City bus powertrain comparison: Driving cycle variation and passenger load sensitivity analysis. Energies (Basel), 11(7), 1755-. https://doi.org/10.3390/en11071755 | |
dc.relation | Liu, Wang, L., Zeng, Z., & Bie, Y. (2022). Optimal charging plan for electric bus considering time-of-day electricity tariff. Journal of Intelligent and Connected Vehicles, 5(2), 123-137. https://doi.org/10.1108/JICV-04-2022-0008 | |
dc.relation | Kontou, & Miles, J. (2015). Electric Buses: Lessons to be Learnt from the Milton Keynes Demonstration Project. Procedia Engineering, 118, 1137-1144. https://doi.org/10.1016/j.proeng.2015.08.455 | |
dc.relation | Gao, Lin, Z., LaClair, T. J., Liu, C., Li, J.-M., Birky, A. K., & Ward, J. (2017). Battery capacity and recharging needs for electric buses in city transit service. Energy (Oxford), 122(C), 588-600. https://doi.org/10.1016/j.energy.2017.01.101 | |
dc.relation | International Energy Agency (2021). Global energy review: CO2 emissions in 2021. https://www.iea.org | |
dc.relation | D. Hall, N. Lutsey (2018). Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions. The International Council of Clean Transportation | |
dc.relation | F. Vicente, O. Delgado, R. Muncrief (2015). Heavy-duty vehicle fuel-efficiency simulation: a comparison of US and EU tools The International Council of Clean Transportation | |
dc.relation | G.M.A. Burnham (2019). Life-cycle emissions and costs of medium- and heavy-duty vehicles in Colorado | |
dc.relation | Le Quyen Luu, Eleonora Riva Sanseverino, Maurizio Cellura, Hoai-Nam Nguyen, Thanh Mai Nguyen, Hong Anh Nguyen (2022). Comparative life cycle impact assessment of electric and conventional bus in Vietnam. https://doi.org/10.1016/j.seta.2022.102873. | |
dc.relation | Pengshun Li, Yuhang Zhang, Yi Zhang, Yi Zhang, Kai Zhang (2021). Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data. https://doi.org/10.1016/j.apenergy.2021.117204. | |
dc.relation | Junyu Jiang, Yuanbin Yu, Haitao Min, Qiming Cao, Weiyi Sun, Zhaopu Zhang, Chunqi Luo (2023). Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression. https://doi.org/10.1016/j.energy.2022.125866. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Factores influyentes en el consumo de energía de los buses eléctricos: El caso de Bogotá | |
dc.type | Trabajo de grado - Maestría | |