dc.contributor | Tabares Pozos, Alejandra | |
dc.contributor | Sánchez Oyola, Sebastián Joseph | |
dc.contributor | Ojeda, Daniel Ricardo | |
dc.contributor | Alvarez Martínez, David | |
dc.creator | Morales Rodríguez, Magda Lorena | |
dc.creator | Barinas Guio, Jason Alejandro | |
dc.date.accessioned | 2022-12-09T14:26:13Z | |
dc.date.accessioned | 2023-09-07T00:26:10Z | |
dc.date.available | 2022-12-09T14:26:13Z | |
dc.date.available | 2023-09-07T00:26:10Z | |
dc.date.created | 2022-12-09T14:26:13Z | |
dc.date.issued | 2022-11-05 | |
dc.identifier | http://hdl.handle.net/1992/63442 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727395 | |
dc.description.abstract | Aplicación de técnicas de Machine Learning para la caracterización y pronóstico en el volumen de las Interfases en el transporte de hidrocarburos para la empresa Cenit en el tramo Cartagena - Baranoa. Inicialmente se realiza una reducción de dimensionalidad a través feature selection aplicando modelos de regresión y clasificación con la metodología Embedded. Posteriormente, se implementa metodología SHAP que habilita el análisis de los features importantes y su impacto en el modelo de predicción. El pronóstico se aborda con un enfoque de análisis de series de tiempo a través de la implementación de modelos de Forecasting. Para finalmente plasmar los resultados del análisis descriptivo en una herramienta de visualización basada en una solución de inteligencia de negocios. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Inteligencia Analítica para la Toma de Decisiones | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Industrial | |
dc.relation | Neutrium (2013), Calculating interfase volumes for multi-product pipelines. December 2013. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China. Neutrium.Net | |
dc.relation | C. Riverol, S. Harrilal (2018). A Non-linear Autoregressive External Inputs (NARX) model for estimating the mixing volumes between batches in TRANSMIX. December 2018. International Journal of Heat and Mass Transfer · Volume 127, Part A, Pages 161-163 | |
dc.relation | Lundberg, Scott; Lee, Su-In (2017) A Unified Approach to Interpreting Model Predictions. December 2017. 31st International Conference on Neural Information Processing Systems Pages 4768-4777 | |
dc.relation | Wang, Zuo, L., Li, M., Wang, Q., Xue, X., Liu, Q., Jiang, S., Wang, J., & Duan, X. (2021). The Data-Driven Modeling of Pressure Loss in Multi-Batch Refined Oil Pipelines with Drag Reducer Using Long Short-Term Memory (LSTM) Network. Energies (Basel), 14(18), 5871 | |
dc.relation | Prapas, Ioannis (2022). Applied Dimensionality Reduction. Recuperado el 30 de octubre de 2022 de: https://www.learndatasci.com/tutorials/applied-dimensionality-reduction-techniques-using-python/ | |
dc.relation | Lundberg, Scott (2018), Welcome to the SHAP documentation. Recuperado el 12 de noviembre de 2022 de: https://shap.readthedocs.io/en/latest/ | |
dc.relation | Molnar, Christoph (2018) Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Agosto 2018. Leanpub. | |
dc.relation | Mukhiya, Ahmed (2021). Hands-On Exploratory Data Analysis with Python, Ed. Packt Publishing, 352 pages | |
dc.relation | Shapley, Lloyd S. (1953). "A Value for N-Person Games." Contributions to the Theory of Games 2 (28): 307-17. | |
dc.relation | Faisal, Shahla. (2018). Nearest Neighbor Methods for the Imputation of Missing Values in Low and High-Dimensional Data. Cuvillier Verlag. | |
dc.relation | Dobbin, K.K., Simon, R.M. (2011). Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genomics 4, 31. | |
dc.relation | Billings. (2013). Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons, Inc. | |
dc.relation | Turner. (1997). Practical tourism forecasting: D.C. Frechtling, 1996, (Butterworth Heineman, Oxford). | |
dc.relation | Khalili Goudarzi, Maleki, H. R., & Niroomand, S. (2021). An interactive fuzzy programming approach for a new multi-objective multi-product oil pipeline scheduling problem. Iranian Journal of Fuzzy Systems, 18(4), 95. | |
dc.relation | Albon. (2018). Machine learning with Python cookbook: practical solutions from preprocessing to deep learning (First edition.). O'Reilly. | |
dc.relation | Wade, & Glynn, K. (2020). Hands-On Gradient Boosting with XGBoost and scikit-learn (1st edition). Packt Publishing. | |
dc.relation | Yang, Sharma, V., Ye, Z., Lim, L. I., Zhao, L., & Aryaputera, A. W. (2015). Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy (Oxford), 81, 111-119. | |
dc.relation | Mire, Malik, S., & Tyagi, A. K. (2022). Advanced Analytics and Deep Learning Models. John Wiley & Sons, Incorporated. | |
dc.relation | Nikolopoulos, & Thomakos, D. D. (2019). Forecasting with the Theta method: theory and applications (1st edition). Wiley. | |
dc.relation | Dickey, & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427. | |
dc.relation | Ferrari, Alberto, and Marco Russo. Introducing Microsoft Power BI. 1st edition. Redmond, Washington: Microsoft Press, 2016. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Análisis y pronóstico del volumen de interfases en el transporte de hidrocarburos usando algoritmos de Machine Learning | |
dc.type | Trabajo de grado - Maestría | |