dc.contributorTabares Pozos, Alejandra
dc.contributorSánchez Oyola, Sebastián Joseph
dc.contributorOjeda, Daniel Ricardo
dc.contributorAlvarez Martínez, David
dc.creatorMorales Rodríguez, Magda Lorena
dc.creatorBarinas Guio, Jason Alejandro
dc.date.accessioned2022-12-09T14:26:13Z
dc.date.accessioned2023-09-07T00:26:10Z
dc.date.available2022-12-09T14:26:13Z
dc.date.available2023-09-07T00:26:10Z
dc.date.created2022-12-09T14:26:13Z
dc.date.issued2022-11-05
dc.identifierhttp://hdl.handle.net/1992/63442
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727395
dc.description.abstractAplicación de técnicas de Machine Learning para la caracterización y pronóstico en el volumen de las Interfases en el transporte de hidrocarburos para la empresa Cenit en el tramo Cartagena - Baranoa. Inicialmente se realiza una reducción de dimensionalidad a través feature selection aplicando modelos de regresión y clasificación con la metodología Embedded. Posteriormente, se implementa metodología SHAP que habilita el análisis de los features importantes y su impacto en el modelo de predicción. El pronóstico se aborda con un enfoque de análisis de series de tiempo a través de la implementación de modelos de Forecasting. Para finalmente plasmar los resultados del análisis descriptivo en una herramienta de visualización basada en una solución de inteligencia de negocios.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Inteligencia Analítica para la Toma de Decisiones
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Industrial
dc.relationNeutrium (2013), Calculating interfase volumes for multi-product pipelines. December 2013. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China. Neutrium.Net
dc.relationC. Riverol, S. Harrilal (2018). A Non-linear Autoregressive External Inputs (NARX) model for estimating the mixing volumes between batches in TRANSMIX. December 2018. International Journal of Heat and Mass Transfer · Volume 127, Part A, Pages 161-163
dc.relationLundberg, Scott; Lee, Su-In (2017) A Unified Approach to Interpreting Model Predictions. December 2017. 31st International Conference on Neural Information Processing Systems Pages 4768-4777
dc.relationWang, Zuo, L., Li, M., Wang, Q., Xue, X., Liu, Q., Jiang, S., Wang, J., & Duan, X. (2021). The Data-Driven Modeling of Pressure Loss in Multi-Batch Refined Oil Pipelines with Drag Reducer Using Long Short-Term Memory (LSTM) Network. Energies (Basel), 14(18), 5871
dc.relationPrapas, Ioannis (2022). Applied Dimensionality Reduction. Recuperado el 30 de octubre de 2022 de: https://www.learndatasci.com/tutorials/applied-dimensionality-reduction-techniques-using-python/
dc.relationLundberg, Scott (2018), Welcome to the SHAP documentation. Recuperado el 12 de noviembre de 2022 de: https://shap.readthedocs.io/en/latest/
dc.relationMolnar, Christoph (2018) Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Agosto 2018. Leanpub.
dc.relationMukhiya, Ahmed (2021). Hands-On Exploratory Data Analysis with Python, Ed. Packt Publishing, 352 pages
dc.relationShapley, Lloyd S. (1953). "A Value for N-Person Games." Contributions to the Theory of Games 2 (28): 307-17.
dc.relationFaisal, Shahla. (2018). Nearest Neighbor Methods for the Imputation of Missing Values in Low and High-Dimensional Data. Cuvillier Verlag.
dc.relationDobbin, K.K., Simon, R.M. (2011). Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genomics 4, 31.
dc.relationBillings. (2013). Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons, Inc.
dc.relationTurner. (1997). Practical tourism forecasting: D.C. Frechtling, 1996, (Butterworth Heineman, Oxford).
dc.relationKhalili Goudarzi, Maleki, H. R., & Niroomand, S. (2021). An interactive fuzzy programming approach for a new multi-objective multi-product oil pipeline scheduling problem. Iranian Journal of Fuzzy Systems, 18(4), 95.
dc.relationAlbon. (2018). Machine learning with Python cookbook: practical solutions from preprocessing to deep learning (First edition.). O'Reilly.
dc.relationWade, & Glynn, K. (2020). Hands-On Gradient Boosting with XGBoost and scikit-learn (1st edition). Packt Publishing.
dc.relationYang, Sharma, V., Ye, Z., Lim, L. I., Zhao, L., & Aryaputera, A. W. (2015). Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy (Oxford), 81, 111-119.
dc.relationMire, Malik, S., & Tyagi, A. K. (2022). Advanced Analytics and Deep Learning Models. John Wiley & Sons, Incorporated.
dc.relationNikolopoulos, & Thomakos, D. D. (2019). Forecasting with the Theta method: theory and applications (1st edition). Wiley.
dc.relationDickey, & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427.
dc.relationFerrari, Alberto, and Marco Russo. Introducing Microsoft Power BI. 1st edition. Redmond, Washington: Microsoft Press, 2016.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnálisis y pronóstico del volumen de interfases en el transporte de hidrocarburos usando algoritmos de Machine Learning
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución