dc.contributorTakahashi Rodriguez, Silvia
dc.creatorMoreno Mercado, Santiago
dc.date.accessioned2023-01-31T14:20:52Z
dc.date.accessioned2023-09-07T00:25:18Z
dc.date.available2023-01-31T14:20:52Z
dc.date.available2023-09-07T00:25:18Z
dc.date.created2023-01-31T14:20:52Z
dc.date.issued2023-01-25
dc.identifierhttp://hdl.handle.net/1992/64387
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727382
dc.description.abstractThe NEAT algorithm grants useful tools for creating agents that beat simple games, as the agents created through it can give simple and clear outputs, given a set of defined inputs, as well as a fitness/reward formula that is straightforward to design for simple games. Not only that but it's capabilities of generating variable agent "genomes" which take different approaches to the possible hurdle the game presents. This project focuses on developing agents that are able to play the Atari game, Asteroids, with some level of competence, and how these different species fare against the game's hurdles, including the various elements of randomness that the game's setting presents.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationPapavasileiou, Cornelis, J., & Jansen, B. (2021). A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies." Evolutionary Computation, 29(1), 1-73. https://doi.org/10.1162/evco_a_00282
dc.relationNEAT Overview NEAT-Python 0.92 documentation. (s. f.). https://neat-python.readthedocs.io/en/latest/neat_overview.html
dc.relationFormica, F. (2022, Jul 24) finnformica/Asteroids-with-NEAT-python Retrieved from Github: https://github.com/finnformica/Asteroids-with-NEAT-python in November 2022
dc.relation"The Beach Lab" (Jan 3, 2019) TheBeachLab/asteroids Retrieved from Github: https://github.com/TheBeachLab/asteroids in November 2022
dc.relationMurray-Smith, D. J. (2012). Experimental modelling: system identification, parameter estimation and model optimisation techniques. Modelling and Simulation of Integrated Systems in Engineering, 165-214. https://doi.org/10.1533/9780857096050.165
dc.relationEducation, I. C. (2021, 3 agosto). Neural Networks. https://www.ibm.com/cloud/learn/neural-networks
dc.relationEducation, I. C. (2021a, enero 6). Convolutional Neural Networks. https://www.ibm.com/cloud/learn/convolutional-neural-networks
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleNEAT implementation for adapting neural networks applied to ATARI Asteroids
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución