dc.contributor | Manrique Piramanrique, Rubén Francisco | |
dc.contributor | Aguirre Herrera, Sandra Leonor | |
dc.contributor | Mariño Drews, Olga | |
dc.creator | Bravo Mora, Cristian Alejandro | |
dc.date.accessioned | 2023-06-23T14:24:21Z | |
dc.date.accessioned | 2023-09-07T00:17:57Z | |
dc.date.available | 2023-06-23T14:24:21Z | |
dc.date.available | 2023-09-07T00:17:57Z | |
dc.date.created | 2023-06-23T14:24:21Z | |
dc.date.issued | 2023-05-31 | |
dc.identifier | http://hdl.handle.net/1992/67849 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727278 | |
dc.description.abstract | Knowledge Tracing (KT) es un área de investigación en la inteligencia artificial cuyo objetivo
es modelar el conocimiento de un estudiante a través del análisis de sus interacciones en el
tiempo durante su participación en un curso académico. En este trabajo se propone realizar
un comparativo de diferentes modelos de KT, encontrados en la literatura del estado del arte,
entrenados y evaluados con los ejercicios que los estudiantes del curso Introducción a la
Programación suben a la plataforma conocida como SENECODE. Dicha plataforma recopila
y califica el código fuente de los ejercicios de programación resueltos por estudiantes novatos
de la Universidad de Los Andes. Seleccionando y aplicando varios modelos de KT a los datos
de esta plataforma, se propone construir un modelo KT con variaciones en los datos de
entrada, teniendo principalmente en cuenta el código fuente de los ejercicios realizados por
los estudiantes junto a los datos tradicionales de KT para medir y predecir el nivel de maestría
y conocimiento que cada estudiante tiene sobre los diferentes módulos del curso. Finalmente,
se realiza una prueba de concepto para utilizar el modelo de KT para dar retroalimentación a
los estudiantes en aquellos temas o módulos en el que posiblemente requieran un refuerzo. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería de Sistemas y Computación | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Sistemas y Computación | |
dc.relation | Abdelrahman, G., y Wang, Q. (2019). Knowledge Tracing with Sequential Key-Value Memory
Networks. En Proceedings of the 42nd international acm sigir conference on research and
development in information retrieval. Washington: ACM Conference. | |
dc.relation | Abdelrahman, G., Wang, Q., y Nunes, B. P. (2022). Knowledge Tracing: A Survey. ACM
Computing Surveys(October). Descargado de http://arxiv.org/abs/2201.06953
doi: 10.1145/3569576 | |
dc.relation | Albert T Corbett and John R Anderson. (1994). Knowledge tracing: Modeling the acquisition
of procedural knowledge. UMUAI, 4, 253-278 | |
dc.relation | Badrinath, A., Wang, F., y Pardos, Z. (2021). pybkt: An accessible python library of bayesian
knowledge tracing models. En Proceedings of the 14th international conference on
educational data mining (pp. 468-474) | |
dc.relation | bigdata ustc. (2021). Eduktm. https://github.com/bigdata-ustc/EduKTM. GitHub. | |
dc.relation | Bodily, R., Ikahihifo, T. K., Mackley, B., y Graham, C. R. (2018). The design, development, and
implementation of student-facing learning analytics dashboards. Journal of Compu ting in Higher Education, 30(3), 572-598. Descargado de https://doi.org/10.1007/
s12528-018-9186-0 doi: 10.1007/s12528-018-9186-0 | |
dc.relation | Cen, H., Koedinger, K., y Junker, B. (2006). Learning Factors Analysis - A General Method for
Cognitive Model Evaluation and Improvement Learning Factors Analysis. ITS, 4053. doi:
10.1007/11774303 | |
dc.relation | Choi, Y., Lee, Y., Cho, J., Baek, J., Kim, B., Cha, Y., . . . Berkeley, U. C. (2020). Towards an
Appropriate Query , Key , and Value Computation for Knowledge Tracing. En Proceedings
of the seventh acm conference on learning. L@S. | |
dc.relation | CORBET, A. T., y ANDERSON, J. R. (1995). Knowledge Tracing : Modeling the Acquisition of
Procedural Knowledge. Kluwer Academic Publishers, 253-278 | |
dc.relation | Dai, M., Hung, J.-l., Du, X., Tang, H., y Li, H. (2021). Knowledge Tracing : A Review of
Available Technologies. Journal of E Journal of Educational T ducational Technology De
echnology Development and Ex elopment and Exchange (JETDE), 14(2). doi: 10.18785/jetde.1402.01 | |
dc.relation | Diana, N., Grover, S., Eagle, M., Bienkowski, M., Stamper, J., y Basu, S. (2017). An instruc tor dashboard for real-time analytics in interactive programming assignments. ACM
International Conference Proceeding Series, 272-279. doi: 10.1145/3027385.3027441 | |
dc.relation | Ding, X., Han, T., Fang, Y., y Larson, E. (2022, aug). An approach for combining multimodal
fusion and neural architecture search applied to knowledge tracing. Applied Intelligence.
doi: 10.1007/s10489-022-04095-x | |
dc.relation | Goodfellow, I., Bengio, Y., y Courville, A. (2016). Deep learning. MIT Press | |
dc.relation | Hwang, J. (2021). Juno dkt. https://github.com/juno-hwang/juno-dkt. GitHub. | |
dc.relation | jdxyw. (2021). deepkt. https://github.com/jdxyw/deepKT. GitHub. | |
dc.relation | Jr, P., Analysis, P. F., Alternative, N., Tracing, K., Dimitrova, V., Conference, I., y Intelligence, A.
(2009). Performance Factors Analysis - A New Alternative to Knowledge Tracing. AIED,
200, 531-538 | |
dc.relation | Klingler, S., Schwing, A. G., y Gross, M. (2017). Dynamic Bayesian Networks for Student. IEEE
Trans. Learn. Technol. 10, 450´s462. | |
dc.relation | Lang, C. (2017). Opportunities for personalization in modeling students as Bayesian
learners. ACM International Conference Proceeding Series(1), 41-45. doi: 10.1145/
3027385.3027410 | |
dc.relation | Liang, Y., Peng, T., Pu, Y., y Wu, W. (2022). OPEN HELP - DKT : an interpretable cognitive
model of how students learn programming based on deep knowledge tracing. Scientific
Reports(0123456789), 1-11. Descargado de https://doi.org/10.1038/s41598-022
-07956-0 doi: 10.1038/s41598-022-07956-0 | |
dc.relation | Liu, Q., Shen, S., Huang, Z., Chen, E., Member, S., y Zheng, Y. (2021). A Survey of Knowledge
Tracing. Cornell University. Descargado de https://arxiv.org/abs/2105.15106 | |
dc.relation | Liu, T. (2022). Knowledge tracing : A bibliometric analysis. Computers and Education:
Artificial Intelligence, 3(July), 100090. Descargado de https://doi.org/10.1016/
j.caeai.2022.100090 doi: 10.1016/j.caeai.2022.100090 | |
dc.relation | Liu, Z., Liu, Q., Chen, J., Huang, S., Tang, J., y Luo, W. (2022). pykt: A python library to
benchmark deep learning based knowledge tracing models. En Thirty-sixth conference
on neural information processing systems datasets and benchmarks track. | |
dc.relation | May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,
261(5560), 459-467. | |
dc.relation | Nagatani, K., Chen, Y.-y., y Chen, F. (2019). Augmenting Knowledge Tracing by Considering For getting Behavior. New York: The World Wide Web Conference (WWW 19). Association
for Computing Machinery. doi: https://doi.org/10.1145/3308558.3313565 | |
dc.relation | Nakagawa, H., Iwasawa, Y., y Matsuo, Y. (2019). Graph-based Knowledge Tracing: Mode ling Student Proficiency Using Graph Neural Network. En Eee/wic/acm international
conference (pp. 156-163). Web Intelligence (WI) | |
dc.relation | Noh, H. (2022). Knowledge tracing collection with pytorch. https://github.com/hcnoh/
knowledge-tracing-collection-pytorch. GitHub. | |
dc.relation | Orr, J. W., y Russell, N. (2021). Automatic Assessment of the Design Quality of Python Programs
with Personalized Feedback. Descargado de http://arxiv.org/abs/2106.01399 | |
dc.relation | Paaßen, B., McBroom, J., Jeffries, B., Yacef, K., y Koprinska, I. (2021). Mapping Python
Programs to Vectors using Recursive Neural Encodings. Journal of Educational Data
Mining, 13(3), 1-35. doi: 10.5281/zenodo.5634224 | |
dc.relation | Pandey, S., y Karypis, G. (2019). A Self-Attentive model for Knowledge Tracing. EDM. | |
dc.relation | Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., y Sohl-Dickstein, J. (2015).
Deep knowledge tracing. En Advances in neural information processing systems (Vol.
2015-Janua, pp. 505-513). | |
dc.relation | Regularization, P.-c., y Yeung, C.-k. (2018). Addressing two problems in deep knowledge
tracing via prediction-consistent regularization. En Proceedings of the fifth annual acm
conference on learning at scale (pp. 1-10). New York. doi: https://doi.org/10.1145/
3231644.3231647 | |
dc.relation | Shen, S., Liu, Q., Chen, E., Huang, Z., Huang, W., Yin, Y., . . . Wang, S. (2021). Learning Process consistent Knowledge Tracing. En Proceedings of the 27th acm sigkdd conference (pp.
1452-1460). Knowledge Discovery Data Mining. | |
dc.relation | Shi, Y., Chi, M., Barnes, T., y Price, T. (2022). Code-dkt: A code-based knowledge tracing model
for programming tasks | |
dc.relation | Smith, J. D., y Johnson, A. B. (2018). Bayesian modeling: Principles and applications. Journal
of Statistical Methods, 45(2), 123-145 | |
dc.relation | Wang, C., Sahebi, S., Zhao, S., Brusilovsky, P., y Moraes, L. O. (2021). Knowledge tracing for
complex problem solving: Granular rank-based tensor factorization. UMAP 2021 - Pro ceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization,
179-188. doi: 10.1145/3450613.3456831 | |
dc.relation | Xiao, Y., Xiao, R., Huang, N., Hu, Y., Li, H., y Sun, B. (2022, oct). Knowledge tracing based on
multi-feature fusion. Neural Computing and Applications. Descargado de https://
link.springer.com/10.1007/s00521-022-07834-w doi: 10.1007/s00521-022-07834
-w | |
dc.relation | Zhang, J., Shi, X., King, I., y Yeung, D.-y. (2017). Dynamic Key-Value Memory Networks for
Knowledge Tracing. | |
dc.relation | Zhu, M., Han, S., Yuan, P., y Lu, X. (2022). Enhancing Programming Knowledge Tracing
by Interacting Programming Skills and Student Code. ACM International Conference
Proceeding Series, 438-443. doi: 10.1145/3506860.3506870 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Comparativo entre modelos de knowledge tracing aplicados a los ejercicios de la plataforma SENECODE | |
dc.type | Trabajo de grado - Maestría | |