dc.contributorCasas Rodríguez, Juan Pablo
dc.contributorMarañón León, Edgar Alejandro
dc.contributorHernández Acevedo, Camilo
dc.contributorIntegridad Estructural
dc.creatorSerrano Ruiz, Daniel Eduardo
dc.date.accessioned2023-08-02T13:42:12Z
dc.date.accessioned2023-09-07T00:17:25Z
dc.date.available2023-08-02T13:42:12Z
dc.date.available2023-09-07T00:17:25Z
dc.date.created2023-08-02T13:42:12Z
dc.date.issued2023-07-12
dc.identifierhttp://hdl.handle.net/1992/69074
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727269
dc.description.abstractEn la industria y la academia, existe un creciente interés en investigar materiales y estructuras que puedan soportar grandes cargas sin aumentar significativamente su densidad, lo que reduciría el peso asociado. Este trabajo se centra en las estructuras reticulares superficiales, específicamente las estructuras TPMS (Superficies de Curvatura Media Triperiodica), y analiza su comportamiento bajo cargas compresivas en condiciones cuasi-estáticas y dinámicas. Se investigó la influencia del tipo de generación (sheet-based y skeletal-based) y la densidad relativa en la curva fuerza vs desplazamiento, el mecanismo de falla y las propiedades de absorción de energía. Los ensayos compresivos se realizaron a diferentes tasas de deformación, utilizando una máquina universal de ensayos y una Open Hopkinson Pressure Bar. Los resultados mostraron que la topología y el tipo de generación de la estructura celular influyen en la generación de una región de meseta estable en la curva fuerza vs desplazamiento. Además, se observó un comportamiento no homogéneo y un mecanismo de colapso capa a capa en los campos de deformación bajo condiciones cuasi-estáticas.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Mecánica
dc.relationAl-Ketan, O., Rowshan, R., & Abu Al-Rub, R. K. (2018). Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 19, 167-183. https://doi.org/10.1016/j.addma.2017.12.006
dc.relationAnycubic UV Tough Resin. ANYCUBIC, www.anycubic.com/collections/flexible-tough-resin/products/get-3-for-the-price-of-2-anycubic-uv-tough-resin. Accessed 24 June 2023.
dc.relationASM. (2021). ASM Handbook Volume 11: Failure Analysis and Prevention (M. Brett A., S. Roch J., P. Ronald J., & D. Daniel P., Eds.; 1st ed., Vol. 11). ASM.
dc.relationASTM. (2020). ASTM D792-20 - Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
dc.relationASTM. (2021). ASTM D3418-21 - Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry.
dc.relationASTM. (2022). ASTM D638-22 - Standard Test Method for Tensile Properties of Plastics.
dc.relationASTM. (2023). ASTM D1621-16 - Standard Test Method for Compressive Properties of Rigid Cellular Plastics.
dc.relationBigger, R., Blaysat, B., Boo, C., Grewer, M., Hu, J., Jones, A., Klein, M., Raghavan, K., Reu, P., Schmidt, T., Siebert, T., Simenson, M., Turner, D., Vieira, A., & Weikert, T. (2018). A Good Practices Guide for Digital Image Correlation. https://doi.org/10.32720/idics/gpg.ed1
dc.relationDeshpande, V. S., Ashby, M. F., & Fleck, N. A. (2001). Foam topology: bending versus stretching dominated architectures. Acta Materialia, 49(6), 1035¿1040. https://doi.org/10.1016/S1359-6454(00)00379-7
dc.relationFíla, T., Koudelka, P., Falta, J., Zlámal, P., Rada, V., Adorna, M., Bronder, S., & Jirou¿ek, O. (2021). Dynamic impact testing of cellular solids and lattice structures: Application of two-sided direct impact Hopkinson bar. International Journal of Impact Engineering, 148, 103767. https://doi.org/10.1016/j.ijimpeng.2020.103767
dc.relationGenus (matemáticas). Wikipedia. (2020). Retrieved 26 January 2021, from https://es.wikipedia.org/wiki/Genus_(matem%C3%A1ticas).
dc.relationGibson, L. J., & Ashby, M. F. (1997a). Cellular Solids. Cambridge University Press. https://doi.org/10.1017/CBO9781139878326
dc.relationGibson, L. J., & Ashby, M. F. (1997b). Cellular Solids. Cambridge University Press. https://doi.org/10.1017/CBO9781139878326
dc.relationGovender, R. A., & Curry, R. J. (2016). The ¿Open¿ Hopkinson Pressure Bar: Towards Addressing Force Equilibrium in Specimens with Non-uniform Deformation. Journal of Dynamic Behavior of Materials, 2(1), 43-49. https://doi.org/10.1007/s40870-015-0042-2
dc.relationJakkula, P., Ganzenmüller, G. C., Beisel, S., Rüthnick, P., & Hiermaier, S. (2022). The Symmpact: A Direct-Impact Hopkinson Bar Setup Suitable for Investigating Dynamic Equilibrium in Low-Impedance Materials. Experimental Mechanics: An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures, 62(2), 213-213-222. https://doi.org/10.1007/s11340-021-00785-8
dc.relationLi, Q. M., Magkiriadis, I., & Harrigan, J. J. (2006). Compressive Strain at the Onset of Densification of Cellular Solids. Journal of Cellular Plastics, 42(5), 371-392. https://doi.org/10.1177/0021955X06063519
dc.relationMars 2 pro 2K. ELEGOO Official, www.elegoo.com/products/elegoo-mars-2-pro-mono-lcd-3d-printer. Accessed 24 June 2023.
dc.relationMaskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., & Ashcroft, I. A. (2017). Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16, 24-29. https://doi.org/10.1016/J.ADDMA.2017.04.003
dc.relationMaskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., & Hague, R. J. M. (2018). Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer, 152, 62-71. https://doi.org/10.1016/J.POLYMER.2017.11.049
dc.relationNovak, N., Al-Ketan, O., Krstulovi¿-Opara, L., Rowshan, R., Abu Al-Rub, R. K., Vesenjak, M., & Ren, Z. (2021). Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures. Composite Structures, 266. https://doi.org/10.1016/j.compstruct.2021.113801
dc.relationPeroni, M., Solomos, G., & Pizzinato, V. (2013). Impact behaviour testing of aluminium foam. International Journal of Impact Engineering, 53, 74-83. https://doi.org/10.1016/j.ijimpeng.2012.07.002
dc.relationPhilosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996. Construction of triply periodic minimal surfaces. 354(1715), pp.2077-2104.
dc.relationPrincipal Curvatures. The Scientific Graphics Project. Retrieved 26 January 2021, from https://www.msri.org/publications/sgp/jim/geom/surface/local/principal/index.html.
dc.relationSchoen, A. Alan Schoen geometry. Schoengeometry.com. Retrieved 26 January 2021, from https://schoengeometry.com/e-tpms.html.
dc.relationSleichrt, J., Fíla, T., Koudelka, P., Adorna, M., Falta, J., Zlámal, P., Glinz, J., Neuhäuserová, M., Doktor, T., Mauko, A., Kytý, D., Vesenjak, M., Duarte, I., Ren, Z., & Jirouek, O. (2021). Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography. Materials Science & Engineering A, 800. https://doi.org/10.1016/j.msea.2020.140096
dc.relationSun, Y., & Li, Q. M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 112, 74-115. https://doi.org/10.1016/J.IJIMPENG.2017.10.006
dc.relationTriply Periodic Minimal surfaces. Epinet. Retrieved 26 January 2021, from http://epinet.anu.edu.au/mathematics/minimal_surfaces.
dc.relationWhat equations are used to create the TPMS types?. nTopology. (2021). Retrieved 26 January 2021, from https://support.ntopology.com/hc/en-us/articles/360053267814-TPMS-Equations.
dc.relationWhitehead, S. (2019). Triply Periodic Minimal Surfaces. WeWantToLearn.net. Retrieved 26 January 2021, from https://wewanttolearn.wordpress.com/2019/02/03/triply-periodic-minimal-surfaces/.
dc.relationYin, H., Liu, Z., Dai, J., Wen, G., & Zhang, C. (2020). Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Composites Part B: Engineering, 182. https://doi.org/10.1016/j.compositesb.2019.107565
dc.relationZhong, W. Z., Rusinek, A., Jankowiak, T., Abed, F., Bernier, R., & Sutter, G. (2015). Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system. Tribology International, 90, 1-14. https://doi.org/10.1016/j.triboint.2015.04.002
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleCaracterización de estructuras reticulares de tipo TPMS en condiciones cuasi estáticas y dinámicas
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución