dc.contributorVives Flórez, Martha Josefina
dc.contributorCelis Ramírez, Adriana Marcela
dc.contributorValderrama Aguirre, Augusto Elías
dc.contributorJiménez Quiceno, Judy Natalia
dc.contributorCIMIC
dc.creatorÁlvarez Osorio, Andrea Katherine
dc.date.accessioned2023-08-08T20:20:52Z
dc.date.accessioned2023-09-07T00:17:19Z
dc.date.available2023-08-08T20:20:52Z
dc.date.available2023-09-07T00:17:19Z
dc.date.created2023-08-08T20:20:52Z
dc.date.issued2023-06-06
dc.identifierhttp://hdl.handle.net/1992/69440
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727266
dc.description.abstractLa propagación de Infecciones Asociadas a la Atención en Salud (IAAS), principalmente por contaminación bacteriana, representa una seria amenaza para los sistemas de salud. La prevalencia de K. pneumoniae en hisopos de superficie, su detección en distintos materiales, la creciente resistencia global a carbapenémicos con tasas de mortalidad de 22-72% y cepas resistentes a desinfectantes, acentúan la necesidad de opciones biotecnológicas. Con el fin de explorar una alternativa de descontaminación efectiva y específica para el control de aislamientos de K. pneumoniae multirresistente, este estudio investigó el potencial de los fagos para controlar la carga bacteriana en materiales de superficies comunes en entornos clínicos: acero, tela, PVC y poliestireno. Se determinó que los aislamientos de K. pneumoniae sobrevivieron hasta 24 horas en superficies, con reducciones entre 0.49-1.59 y 1.69-3.88 LOG UFC a 24°C y 37°C, respectivamente. Posteriormente, se seleccionaron tres bacteriófagos de aguas residuales hospitalarias, que en conjunto mostraron actividad lítica contra el 88% de los aislamientos hospitalarios, además, de actividad antimicrobiana en superficies, logrando reducciones de hasta 4.99 LOG UFC. Estos resultados respaldan la efectividad de los fagos como desinfectantes y sugieren su potencial uso complementario en situaciones de brote en entornos hospitalarios.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAbuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A., & Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coliO157: H7. Applied and environmental microbiology, 74(20), 6230-6238.
dc.relationAdams, M. (1959). Methods of study of bacterial viruses. Bacteriophages. En : (pp. 443-522). Interscience Publishers.
dc.relationAl-Ishaq, R. K., Skariah, S., & Büsselberg, D. (2020). Bacteriophage Treatment: Critical Evaluation of Its Application on World Health Organization Priority Pathogens. Viruses, 13(1), E51. https://doi.org/10.3390/v13010051
dc.relationAssoni, L., Girardello, R., Converso, T. R., & Darrieux, M. (2021). Current Stage in the Development of Klebsiella pneumoniae Vaccines. Infectious Diseases and Therapy, 10(4), 2157-2175. https://doi.org/10.1007/s40121-021-00533-4
dc.relationATCC. (s/f). Klebsiella quasipneumoniae Brisse et al. https://www.atcc.org/products/700603
dc.relationBandick, R. G., Mousavi, S., Bereswill, S., & Heimesaat, M. M. (2020). Review of therapeutic options for infections with carbapenem-resistant Klebsiella pneumoniae. European Journal of Microbiology and Immunology, 10(3), 115-124. https://doi.org/10.1556/1886.2020.00022
dc.relationBrunke, M. S., Konrat, K., Schaudinn, C., Piening, B., Pfeifer, Y., Becker, L., Schwebke, I., & Arvand, M. (2022). Tolerance of biofilm of a carbapenem-resistant Klebsiella pneumoniae involved in a duodenoscopy-associated outbreak to the disinfectant used in reprocessing. Antimicrobial Resistance & Infection Control, 11(1), 81. https://doi.org/10.1186/s13756-022-01112-z
dc.relationCaselli, E., D'Accolti, M., Vandini, A., Lanzoni, L., Camerada, M. T., Coccagna, M., Branchini, A., Antonioli, P., Balboni, P. G., & Di Luca, D. (2016). Impact of a probiotic-based cleaning intervention on the microbiota ecosystem of the hospital surfaces: Focus on the resistome remodulation. PLoS One, 11(2), e0148857.
dc.relationChen, L.-K., Liu, Y.-L., Hu, A., Chang, K.-C., Lin, N.-T., Lai, M.-J., & Tseng, C.-C. (2013). Potential of bacteriophage phiAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC microbiology, 13(1), 1-10.
dc.relationCieslik, M., Bagioska, N., Górski, A., & Jonczyk-Matysiak, E. (2021). Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms, 9(2), 206. https://doi.org/10.3390/microorganisms9020206
dc.relationClokie, M. R. J., Kropinski, A. M., & Lavigne, R. (Eds.). (2018). Bacteriophages: Methods and protocols. volume 3. Humana Press: Springer.
dc.relationClokie, M. R., & Kropinski, A. (2009). Methods and protocols, volume 1: Isolation, characterization, and interactions. Methods in molecular biology". Humana press, 69-81.
dc.relationD'Accolti, M., Soffritti, I., Lanzoni, L., Bisi, M., Volta, A., Mazzacane, S., & Caselli, E. (2019). Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage-probiotic sanitation strategy: A monocentric study. Microbial Biotechnology, 12(4), 742-751.
dc.relationD'Accolti, M., Soffritti, I., Mazzacane, S., & Caselli, E. (2021). Bacteriophages as a potential 360-degree pathogen control strategy. Microorganisms, 9(2), 261.
dc.relationD'Accolti, M., Soffritti, I., Piffanelli, M., Bisi, M., Mazzacane, S., & Caselli, E. (2018). Efficient removal of hospital pathogens from hard surfaces by a combined use of bacteriophages and probiotics: Potential as sanitizing agents. Infection and drug resistance, 11, 1015.
dc.relationDi Martino, P., Cafferini, N., Joly, B., & Darfeuille-Michaud, A. (2003). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Research in microbiology, 154(1), 9-16.
dc.relationEffah, C. Y., Drokow, E. K., Agboyibor, C., Liu, S., Nuamah, E., Sun, T., Miao, L., Wang, J., Xu, Z., Wu, Y., & Zhang, X. (2021). Evaluation of the Therapeutic Outcomes of Antibiotic Regimen Against Carbapenemase-Producing Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 12, 597907. https://doi.org/10.3389/fphar.2021.597907
dc.relationEl Haddad, L., Harb, C. P., Gebara, M. A., Stibich, M. A., & Chemaly, R. F. (2019). A Systematic and Critical Review of Bacteriophage Therapy Against Multidrug-resistant ESKAPE Organisms in Humans. Clinical Infectious Diseases, 69(1), 167-178. https://doi.org/10.1093/cid/ciy947
dc.relationEsparza, G. (2020). Bacterias Gram negativas resistentes a carbapenemicos en Colombia: Un desafío continuo al sistema de salud. Infectio, 24(2), 55-56.
dc.relationFreeman, J. T., Nimmo, J., Gregory, E., Tiong, A., De Almeida, M., McAuliffe, G. N., & Roberts, S. A. (2014). Predictors of hospital surface contamination with Extended-spectrum beta-lactamase-producing Escherichia coliand Klebsiella pneumoniae: Patient and organism factors. Antimicrobial resistance and infection control, 3(1), 1-7.
dc.relationGong, C., & Jiang, X. (2017). Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science, 96(6), 1838-1848. https://doi.org/10.3382/ps/pew463
dc.relationHassan, M. Z., Sturm-Ramirez, K., Rahman, M. Z., Hossain, K., Aleem, M. A., Bhuiyan, M. U., Islam, M. M., Rahman, M., & Gurley, E. S. (2019). Contamination of hospital surfaces with respiratory pathogens in Bangladesh. PLoS One, 14(10), e0224065.
dc.relationHendrik, T. C., Voor in 't holt, A. F., & Vos, M. C. (2015). Clinical and Molecular Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Klebsiella spp.: A Systematic Review and Meta-Analyses. PLOS ONE, 10(10), e0140754. https://doi.org/10.1371/journal.pone.0140754
dc.relationHorváth, M., Kovács, T., Kun, J., Gyenesei, A., Damjanova, I., Tigyi, Z., & Schneider, G. (2023). Virulence Characteristics and Molecular Typing of Carbapenem-Resistant ST15 Klebsiella pneumoniae Clinical Isolates, Possessing the K24 Capsular Type. Antibiotics, 12(3), 479.
dc.relationHospital Universitario Mayor-MEDERI. (s/f). Programa de Uso Racional de Antibióticos -PROA. Coordinación de Infecciones y Vigilancia Epidemiológic. Instituto Nacional de Salud. (2021). Boletín Epidemiológico Semanal, Semana 44. [dataset].
dc.relationJakociune, D., & Moodley, A. (2018). A rapid bacteriophage DNA extraction method. Methods and protocols, 1(3), 27.
dc.relationJasim, S. T., & Farhan, A. S. (2020). Article Review: Klebsiella Pneumonia: Epidemiology, Virulence Factors and Treatment. flora, 14(2), 5-10.
dc.relationJensen, K. C., Hair, B. B., Wienclaw, T. M., Murdock, M. H., Hatch, J. B., Trent, A. T., White, T. D., Haskell, K. J., & Berges, B. K. (2015). Isolation and host range of bacteriophage with lytic activity against methicillin-resistant Staphylococcus aureus and potential use as a fomite decontaminant. PLoS One, 10(7), e0131714.
dc.relationKaraiskos, I., Galani, I., Papoutsaki, V., Galani, L., & Giamarellou, H. (2022). Ma. Expert Review of Anti-Infective Therapy, 20(1), 53-69. https://doi.org/10.1080/14787210.2021.1935237
dc.relationKaszowska, M., Majkowska-Skrobek, G., Markwitz, P., Lood, C., Jachymek, W., Maciejewska, A., Lukasiewicz, J., & Drulis-Kawa, Z. (2021). The mutation in wbaP cps gene cluster selected by phage-borne depolymerase abolishes capsule production and diminishes the virulence of Klebsiella pneumoniae. International journal of molecular sciences, 22(21), 11562.
dc.relationKopotsa, K., Mbelle, N. M., & Osei Sekyere, J. (2020). Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant Klebsiella pneumoniae clinical strains. Microbial Genomics, 6(12). https://doi.org/10.1099/mgen.0.000474
dc.relationLecuona Madrigal, N. (2019). Factores sociodemográficos y clínicos asociados a la mortalidad en pacientes infectados por Klebiella Pneumoniae resistente a carbapenémicos.
dc.relationLogan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases, 215(suppl_1), S28-S36. https://doi.org/10.1093/infdis/jiw282
dc.relationLópez-Cerero, L. (2014). Papel del ambiente hospitalario y los equipamientos en la transmisión de las infecciones nosocomiales. Enfermedades infecciosas y microbiología clínica, 32(7), 459-464.
dc.relationMagiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M., Giske, C., Harbarth, S., Hindler, J., Kahlmeter, G., & Olsson-Liljequist, B. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, 18(3), 268-281.
dc.relationManohar, P., Loh, B., Elangovan, N., Loganathan, A., Nachimuthu, R., & Leptihn, S. (2022). A Multiwell-Plate Caenorhabditis elegans Assay for Assessing the Therapeutic Potential of Bacteriophages against Clinical Pathogens. Microbiology Spectrum, 10(1), e0139321. https://doi.org/10.1128/spectrum.01393-21
dc.relationMartin, R. M., & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, 4. https://doi.org/10.3389/fcimb.2018.00004
dc.relationMartínez, M. L. O., Duran, M. E. M., García, O. E. P., & Bonilla, H. Q. (s/f). CONSUMO DE ANTIBIÓTICOS EN EL ÁMBITO HOSPITALARIO.
dc.relationMcDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical microbiology reviews, 12(1), 147-179.
dc.relationMohd Asri, N. A., Ahmad, S., Mohamud, R., Mohd Hanafi, N., Mohd Zaidi, N. F., Irekeola, A. A., Shueb, R. H., Yee, L. C., Mohd Noor, N., Mustafa, F. H., Yean, C. Y., & Yusof, N. Y. (2021). Global Prevalence of Nosocomial Multidrug-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Antibiotics, 10(12), 1508. https://doi.org/10.3390/antibiotics10121508
dc.relationMulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10, 539. https://doi.org/10.3389/fmicb.2019.00539
dc.relationOrtega, M., Franken, L., Hatesohl, P., & Marsden, J. (2007). Efficacy of ecoquest radiant catalytic ionization cell and breeze at ozone generator at reducing microbial populations on stainless steel surfaces. Journal of Rapid Methods & Automation in Microbiology, 15(4), 359-368.
dc.relationPajunen, M., Kiljunen, S., & Skurnik, M. (2000). Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to coliphages T3 and T7. Journal of bacteriology, 182(18), 5114-5120.
dc.relationPoerio, N., Olimpieri, T., Henrici De Angelis, L., De Santis, F., Thaller, M. C., D'Andrea, M. M., & Fraziano, M. (2022a). Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Frontiers in Immunology, 13, 835417. https://doi.org/10.3389/fimmu.2022.835417
dc.relationPosada Suárez, L. (2019). Phage-antibiotic synergy with bacteriophage M1-Kp1 in clinical strain of Klebsiella pneumoniae.
dc.relationQuraishi, S. A., Berra, L., & Nozari, A. (2020). Indoor temperature and relative humidity in hospitals: Workplace considerations during the novel coronavirus pandemic. Occupational and Environmental Medicine, 77(7), 508-508.
dc.relationRahimzadeh, G., Zazouli, M. A., & Rezai, M. S. (2022). Potential of lytic bacteriophages as disinfectant to control of Pseudomonas aeruginosa on fomites. Journal of Environmental Health Science and Engineering, 20(1), 219-225. https://doi.org/10.1007/s40201-021-00770-2
dc.relationRashid, M. H., Revazishvili, T., Dean, T., Butani, A., Verratti, K., Bishop-Lilly, K. A., Sozhamannan, S., Sulakvelidze, A., & Rajanna, C. (2012). A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage, 2(3), 168-177.
dc.relationRivera-Jacinto, M., Rodríguez-Ulloa, C., Flores Clavo, R., Serquén López, L., & Arce Gil, Z. (2015). Betalactamasas de espectro extendido tipo TEM y CTX-M en Klebsiella spp y Escherichia coliaisladas de superficies de ambientes hospitalarios. Revista Peruana de Medicina Experimental y Salud Pública, 32, 752-755.
dc.relationRojas, L. J., Weinstock, G. M., De La Cadena, E., Diaz, L., Rios, R., Hanson, B. M., Brown, J. S., Vats, P., Phillips, D. S., & Nguyen, H. (2017). An analysis of the epidemic of kpc-producing Klebsiella pneumoniae: Convergence of two evolutionary mechanisms creates the "Perfect Storm". The Journal of Infectious Diseases.
dc.relationSaavedra, S. Y., Bernal, J. F., Montilla-Escudero, E., Arévalo, S. A., Prada, D. A., Valencia, M. F., Moreno, J., Hidalgo, A. M., García-Vega, Á. S., & Abrudan, M. (2021). Complexity of genomic epidemiology of carbapenem-resistant Klebsiella pneumoniae isolates in Colombia urges the reinforcement of whole genome sequencing-based surveillance programs. Clinical Infectious Diseases, 73(Supplement_4), S290-S299.
dc.relationScott, D. (2009). The direct medical costs of Healthcare-Associated Infections in U.S. Hospitals and the benefits of prevention. Atlanta: Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf
dc.relationSkowron, K., Grudlewska, K., Krawczyk, A., & Gospodarek-Komkowska, E. (2018). The effectiveness of radiant catalytic ionization in inactivation of Listeria monocytogenes planktonic and biofilm cells from food and food contact surfaces as a method of food preservation. Journal of applied microbiology, 124(6), 1493-1505.
dc.relationSolomon, S. L., & Oliver, K. B. (2014). Antibiotic resistance threats in the United States: Stepping back from the brink. American family physician, 89(12), 938-941.
dc.relationSørensen, P. E., Ng, D. Y., Duchateau, L., Ingmer, H., Garmyn, A., & Butaye, P. (2021). Classification of In Vitro Phage-Host Population Growth Dynamics. Microorganisms, 9(12), 2470.
dc.relationTaati Moghadam, M., Khoshbayan, A., Chegini, Z., Farahani, I., & Shariati, A. (2020). Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. Drug Design, Development and Therapy, Volume 14, 1867-1883. https://doi.org/10.2147/DDDT.S251171
dc.relationTomat, D., Quiberoni, A., Mercanti, D., & Balagué, C. (2014). Hard surfaces decontamination of enteropathogenic and Shiga toxin-producing Escherichia coli using bacteriophages. Food research international, 57, 123-129.
dc.relationUK Health Security Agency. (s/f). Culture Collections. https://www.culturecollections.org.uk/products/bacteria/detail.jsp?refId=NCTC+13442&collection=nctc
dc.relationVandini, A., Temmerman, R., Frabetti, A., Caselli, E., Antonioli, P., Balboni, P. G., Platano, D., Branchini, A., & Mazzacane, S. (2014a). Biocontrollo delle Superfici in Ospedali che utilizzano Prodotti Pulenti a Base Microbica.
dc.relationVandini, A., Temmerman, R., Frabetti, A., Caselli, E., Antonioli, P., Balboni, P. G., Platano, D., Branchini, A., & Mazzacane, S. (2014b). Hard surface biocontrol in hospitals using microbial-based cleaning products. Plos one, 9(9), e108598.
dc.relationViazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F. (2011). Reduction of Escherichia coliO157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. International Journal of Food Microbiology, 145(1), 37-42. https://doi.org/10.1016/j.ijfoodmicro.2010.11.021
dc.relationWand, M. E., Bock, L. J., Bonney, L. C., & Sutton, J. M. (2017). Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrobial agents and chemotherapy, 61(1), e01162-16.
dc.relationWang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278. https://doi.org/10.3390/ijerph17176278
dc.relationWeinstein, R. A., & Hota, B. (2004). Contamination, disinfection, and cross-colonization: Are hospital surfaces reservoirs for nosocomial infection? Clinical infectious diseases, 39(8), 1182-1189.
dc.relationWillyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543(7643), 15-15. https://doi.org/10.1038/nature.2017.21550
dc.relationWoolston, J., Parks, A. R., Abuladze, T., Anderson, B., Li, M., Carter, C., Hanna, L. F., Heyse, S., Charbonneau, D., & Sulakvelidze, A. (2013). Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage, 3(3), e25697.
dc.relationXu, L., Sun, X., & Ma, X. (2017). Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Annals of Clinical Microbiology and Antimicrobials, 16(1), 18. https://doi.org/10.1186/s12941-017-0191-3
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEvaluación del uso de bacteriófagos para el biocontrol de aislamientos de Klebsiella pneumoniae multidrogoresistente en cuatro materiales de superficies comunes en entornos clínicos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución