dc.contributorSánchez Muñoz, Juan Armando
dc.contributorCampo, Javier del
dc.contributorCrawford, Andrew Jackson
dc.contributorBIOMMAR (Biología Molecular Marina)
dc.creatorGiraldo Vaca, Juan Sebastián
dc.date.accessioned2023-01-30T19:12:09Z
dc.date.accessioned2023-09-07T00:17:10Z
dc.date.available2023-01-30T19:12:09Z
dc.date.available2023-09-07T00:17:10Z
dc.date.created2023-01-30T19:12:09Z
dc.date.issued2021-07-14
dc.identifierhttp://hdl.handle.net/1992/64336
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727263
dc.description.abstractOstreobium is an endolytic algae that is found abundantly in scleractinian corals worldwide. Historically, it has been recognized as a low-importance coral skeletal bioeroder organism. However, their relationship with corals is fundamental, providing products of photosynthesis and helping when it loses the main symbiont due to stress. Here a contribution to diversity of the algae between corals species of the genus Porites spp. found in the tropical Pacific and Atlantic. For this, it was compared the sequences of rbcL gene from different coral species of other locations in the world with Ostreobium samples extracted from 7 species of coral Porites spp. two of them of the Pacific (P. panamensis, P. lobata) and five of them of the Atlantic (P. furcata, P. porites, P. colonensis, P. branneri, P. astreoides). The differentiation of species was based on two methods, PTP and GMYC, finally a biogeographic analysis was carried out in RASP and a Mesquite software. The results show a high diversity of Ostreobium with more than 15 groups of maximum 3 individuals and 40 individual categories, its origins date back to the Ordovician 500Mya, and it seems not to maintain specificity with its hosts, our analyzes show heterogeneous groups in terms of region or species, Biogeographically, heterogeneous patterns are confirmed that do not allow the exact origins of all clades to be determined. The ancestry analyzes show convergent events for the appearance of Ostreobium in certain genera from the same region, however, the phenomenon is repeated with genera from distant locations. It is concluded then that the diversity of Ostreobium does not correspond specifically to some coral genus, indicating other factors as the main influence of its diversification.
dc.description.abstractOstreobium es un alga endolítica que se encuentra abundantemente en corales escleractíneos a nivel mundial. Históricamente se ha reconocido como un organismo bioerosionador del esqueleto coralino de baja importancia. Sin embargo, se ha observado que su relación con los corales es fundamental, proporcionando productos de la fotosíntesis y ayudando a que perdure cuando pierde su simbionte principal por estrés. Aquí se realiza un aporte a la diversidad del alga entre especies de corales del género Porites spp. hallados en el Pacífico y Atlántico tropical, basado en la diferenciación del gen rbcL. Para esto se comparó con secuencias de diferentes especies de coral de otras localidades del mundo con las muestras de Ostreobium extraídas de 7 especies de corales Porites spp. dos de ellas en el Pacífico (P. panamensis, P. lobata) y cinco de ellas en el Atlántico (P. furcata, P. porites, P. colonensis, P. branneri, P. astreoides), posteriormente se realizó la diferenciación de especies basado en dos métodos, PTP y GMYC, finalmente se hizo un análisis biogeográfico en RASP y un árbol de encestaría en Mesquite para evaluar las regiones geográficas por las que habían pasado los ancestros de Ostreobium y cuales habían sido sus principales hospederos. Los resultados muestran una alta diversidad de Ostreobium con más de 15 grupos de máximo 3 individuos y 40 categorías individuales, sus orígenes se remontan al Ordovícico 500Mya, y parece no mantener especificidad con sus hospederos, nuestros análisis muestran grupos heterogéneos en cuanto región o especie, biogeográficamente se confirman patrones heterogéneos que no permiten determinar con exactitud los orígenes de todos los clados. Los análisis de ancestria muestran eventos convergentes para la aparición de Ostreobium en ciertos géneros de la misma región, sin embargo, se repite el fenómeno con géneros de localidades alejadas. Se concluye entonces que la diversidad de Ostreobium no corresponde específicamente con algún genero coralino, indicando otros factores como influencia principal de su diversificación.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAberhan, M., Nürnberg, S., & Kiessling, W. (2012). Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology, 38, 187-204. https://doi.org/10.5061/dryad.qt0c2
dc.relationBaker, A. C., Correa, A. M. S., & Cunning, R. (2017). Diversity, Distribution and Stability of Symbiodinium in Reef Corals of the Eastern Tropical Pacific. En P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment (pp. 405-420). Springer Netherlands. https://doi.org/10.1007/978-94-017-7499-4_13
dc.relationBowen, B. W., Rocha, L. A., Toonen, R. J., & Karl, S. A. (2013). The origins of tropical marine biodiversity. Trends in Ecology & Evolution, 28(6), 359-366. https://doi.org/10.1016/j.tree.2013.01.018
dc.relationCoffroth, M. A., Lasker, H. R., Diamond, M. E., Bruenn, J. A., & Bermingham, E. (1992). DNA fingerprints of a gorgonian coral: A method for detecting clonal structure in a vegetative species. Marine Biology, 114(2), 317-325. https://doi.org/10.1007/BF00349534
dc.relationConnell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., & Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1627), 20120442. https://doi.org/10.1098/rstb.2012.0442
dc.relationCunningham, C. W., Zhu, H., & Hillis, D. M. (1998). Best-Fit Maximum-Likelihood Models for Phylogenetic Inference: Empirical Tests with Known Phylogenies. Evolution, 52(4), 978-987. https://doi.org/10.1111/j.1558-5646.1998.tb01827.x
dc.relationDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109
dc.relationDawson, M. et al. (s. f.). Field preservation of marine invertebrate tissue for DNA analyses. 8.
dc.relationdel Campo, J., Pombert, J.-F., Slapeta, J., Larkum, A., & Keeling, P. J. (2017). The 'other' coral symbiont: Ostreobium diversity and distribution. The ISME Journal, 11(1), 296-299. https://doi.org/10.1038/ismej.2016.101
dc.relationDel Cortona, A., Jackson, C. J., Bucchini, F., Van Bel, M., D'hondt, S., Skaloud, P., Delwiche, C. F., Knoll, A. H., Raven, J. A., Verbruggen, H., Vandepoele, K., De Clerck, O., & Leliaert, F. (2020). Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences, 117(5), 2551-2559. https://doi.org/10.1073/pnas.1910060117
dc.relationDrummond, A., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol., 22, 1185-1192.
dc.relationFine, M., Steindler, L., & Loya, Y. (2004). Endolithic algae photoacclimate to increased irradiance during coral bleaching. Marine and Freshwater Research, 55(1), 115-121. https://doi.org/10.1071/mf03120
dc.relationFlügel, E., & Senowbari-Daryan, B. (2001). Triassic Reefs of the Tethys. En G. D. Stanley (Ed.), The History and Sedimentology of Ancient Reef Systems (pp. 217-249). Springer US. https://doi.org/10.1007/978-1-4615-1219-6_7
dc.relationGonzalez-Zapata, F. L., Gómez-Osorio, S., & Sánchez, J. A. (2018). Conspicuous endolithic algal associations in a mesophotic reef-building coral. Coral Reefs, 37(3), 705-709. https://doi.org/10.1007/s00338-018-1695-9
dc.relationGrange, J. S., Rybarczyk, H., & Tribollet, A. (2015). The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia). Environmental Science and Pollution Research, 22(18), 13625-13637. https://doi.org/10.1007/s11356-014-4069-z
dc.relationGrizzle, R. E., Ward, K. M., AlShihi, R. M. S., & Burt, J. A. (2016). Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management. Marine Pollution Bulletin, 105(2), 515-523. https://doi.org/10.1016/j.marpolbul.2015.10.005
dc.relationGutner-Hoch, E., & Fine, M. (2011). Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs, 30(3), 643-650. https://doi.org/10.1007/s00338-011-0750-6
dc.relationHambleton, E. A., Jones, V. A. S., Maegele, I., Kvaskoff, D., Sachsenheimer, T., & Guse, A. (2019). Sterol transfer by atypical cholesterol-binding NPC2 proteins in coral-algal symbiosis. eLife, 8, e43923. https://doi.org/10.7554/eLife.43923
dc.relationHumann, P., & DeLoach, N. (2002). Reef Coral Identification. Second. Jacksonville. New World Publications, Inc
dc.relationJackson, C., Knoll, A. H., Chan, C. X., & Verbruggen, H. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports, 8(1), 1523. https://doi.org/10.1038/s41598-017-18805-w
dc.relationJohnson, C. C., & Kauffman, E. G. (2001). Cretaceous Evolution of Reef Ecosystems. En G. D. Stanley (Ed.), The History and Sedimentology of Ancient Reef Systems (pp. 311-349). Springer US. https://doi.org/10.1007/978-1-4615-1219-6_9
dc.relationKelly, L. W., Williams, G. J., Barott, K. L., Carlson, C. A., Dinsdale, E. A., Edwards, R. A., Haas, A. F., Haynes, M., Lim, Y. W., McDole, T., Nelson, C. E., Sala, E., Sandin, S. A., Smith, J. E., Vermeij, M. J. A., Youle, M., & Rohwer, F. (2014). Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proceedings of the National Academy of Sciences, 111(28), 10227-10232.
dc.relationKlaus, J. S., McNeill, D. F., Budd, A. F., & Johnson, K. G. (2008). Assessing Community Change in Miocene to Pliocene Coral Assemblages of the Northern Dominican Republic. En R. H. Nehm & A. F. Budd (Eds.), Evolutionary Stasis and Change in the Dominican Republic Neogene (pp. 193-223). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8215-3_9
dc.relationKolodziej, B., Golubic, S., Bucur, I. I., Radtke, G., & Tribollet, A. (2012). Early Cretaceous record of microboring organisms in skeletons of growing corals. Lethaia, 45(1), 34-45. https://doi.org/10.1111/j.1502-3931.2011.00291.x
dc.relationLaJeunesse, T. C. (2005). "Species" Radiations of Symbiotic Dinoflagellates in the Atlantic and Indo-Pacific Since the Miocene-Pliocene Transition. Molecular Biology and Evolution, 22(3), 570-581. https://doi.org/10.1093/molbev/msi042
dc.relationLaJeunesse, T. C., Pettay, D. T., Sampayo, E. M., Phongsuwan, N., Brown, B., Obura, D. O., Hoegh-Guldberg, O., & Fitt, W. K. (2010). Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. Journal of Biogeography, 37(5), 785-800. https://doi.org/10.1111/j.1365-2699.2010.02273.x
dc.relationLessios, H. A. (2008). The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus. Annual Review of Ecology, Evolution, and Systematics, 39(1), 63-91. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815
dc.relationLukas, K. J. (1974). Two Species of the Chlorophyte Genus Ostreobium from Skeletons of Atlantic and Caribbean Reef Corals1,2. Journal of Phycology, 10(3), 331-335. https://doi.org/10.1111/j.1529-8817.1974.tb02722.x
dc.relationMagnusson, S. H., Fine, M., & Kühl, M. (2007). Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Marine Ecology Progress Series, 332, 119-128. https://doi.org/10.3354/meps332119
dc.relationMarcelino, V. R., & Verbruggen, H. (2016). Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Scientific Reports, 6(1), 31508. https://doi.org/10.1038/srep31508
dc.relationMarko, P. B., Eytan, R. I., & Knowlton, N. (2015). Do large molecular sequence divergences imply an early closure of the Isthmus of Panama? Proceedings of the National Academy of Sciences, 112(43), E5766.
dc.relationMassé, A., Domart-Coulon, I., Golubic, S., Duché, D., & Tribollet, A. (2018). Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Scientific Reports, 8(1), 2293. https://doi.org/10.1038/s41598-018-20196-5
dc.relationMassé, A., Tribollet, A., Meziane, T., Bourguet-Kondracki, M., Yéprémian, C., Sève, C., Thiney, N., Longeon, A., Couté, A., & Domart-Coulon, I. (2020). Functional diversity of microboring Ostreobium algae isolated from corals. Environmental Microbiology, 1462-2920.15256. https://doi.org/10.1111/1462-2920.15256
dc.relationMinh, B. Q., Lanfear, R., Trifinopoulos, J., Schrempf, D., & Schmidt, H. A. (s. f.). IQ-TREE version 2.1.2: Tutorials and Manual Phylogenomic software by maximum likelihood. 157.
dc.relationMontes, C., Cardona, A., McFadden, R., Morón, S. E., Silva, C. A., Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., & Flores, J. A. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. GSA Bulletin, 124(5-6), 780-799. https://doi.org/10.1130/B30528.1
dc.relationO'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., Queiroz, A. de, Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., ... Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), e1600883. https://doi.org/10.1126/sciadv.1600883
dc.relationOsborne, A., Newkirk, D., Groeneveld, J., Martin, E., Tiedemann, R., & Frank, M. (2014). The seawater neodymium and lead isotope record of the final stages of Central American Seaway closure. Paleoceanography, 29. https://doi.org/10.1002/2014PA002676
dc.relationParsons, B., & Sclater, J. G. (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research (1896-1977), 82(5), 803-827. https://doi.org/10.1029/JB082i005p00803
dc.relationPaz-García, D., Galván-Tirado, C., Alvarado, J., Cortés, J., Garcia De Leon, F., Hellberg, M., & Balart, E. (2016). Variation in the whole mitogenome of reef-building Porites corals. Conservation Genetics Resources, 8, 123-127. https://doi.org/10.1007/s12686-016-0527-x
dc.relationPeixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S., & Bourne, D. G. (2017). Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00341
dc.relationPrada, C., DeBiasse, M. B., Neigel, J. E., Yednock, B., Stake, J. L., Forsman, Z. H., Baums, I. B., & Hellberg, M. E. (2014). Genetic species delineation among branching Caribbean Porites corals. Coral Reefs, 33(4), 1019-1030. https://doi.org/10.1007/s00338-014-1179-5
dc.relationRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032
dc.relationRohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. https://doi.org/10.3354/meps243001
dc.relationSerrano, X. M., Baums, I. B., Smith, T. B., Jones, R. J., Shearer, T. L., & Baker, A. C. (2016). Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Scientific Reports, 6(1), 21619. https://doi.org/10.1038/srep21619
dc.relationSheppard, C., Sheppard, A., Mogg, A., Bayley, D., Dempsey, A. C., Roache, R., Turner, J., & Purkis, S. (2017). Coral Bleaching and Mortality in the Chagos Archipelago. Atoll Research Bulletin, 613, 1-26.
dc.relationSilverstein, R. N., Correa, A. M. S., & Baker, A. C. (2012). Specificity is rarely absolute in coral-algal symbiosis: Implications for coral response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1738), 2609-2618. https://doi.org/10.1098/rspb.2012.0055
dc.relationStanley, G. D. (2003). The evolution of modern corals and their early history. Earth-Science Reviews, 60(3), 195-225. https://doi.org/10.1016/S0012-8252(02)00104-6
dc.relationSweet, M. J., & Bulling, M. T. (2017). On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00009
dc.relationTamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
dc.relationThornhill, D. J., Lewis, A. M., Wham, D. C., & LaJeunesse, T. C. (2014). Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution; International Journal of Organic Evolution, 68(2), 352-367. https://doi.org/10.1111/evo.12270
dc.relationTribollet, A., Godinot, C., Atkinson, M., & Langdon, C. (2009). Effects of elevated p CO 2 on dissolution of coral carbonates by microbial euendoliths: CARBONATE DISSOLUTION BY EUENDOLITHS. Global Biogeochemical Cycles, 23(3), n/a-n/a. https://doi.org/10.1029/2008GB003286
dc.relationVenera-Pontón, D. E., Reyes, J., & Diaz-Pulido, G. (2008). REVISIÓN TAXONÓMICA DEL CORAL PORITES COLONENSIS (SCLERACTINIA: PORITIDAE) EN EL CARIBE COLOMBIANO. Boletín de Investigaciones Marinas y Costeras - INVEMAR, 37(2), 71-85.
dc.relationVerbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., Leliaert, F., & De Clerck, O. (2009). A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution, 50(3), 642-653. https://doi.org/10.1016/j.ympev.2008.12.018
dc.relationVeron, J. E. N. (2000). Corals of the World.
dc.relationVillarreal, J. C., & Renner, S. S. (2014). A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Molecular Phylogenetics and Evolution, 78, 25-35. https://doi.org/10.1016/j.ympev.2014.04.014
dc.relationVogel, K., & Brett, C. E. (2009). Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: The early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1), 1-24. https://doi.org/10.1016/j.palaeo.2009.06.032
dc.relationVon Prahl, H., Guhl, F., & Grögl, M. (1979). Gorgona. Facultad de Artes y Ciencias, Departamento de Biología, Universidad de los Andes.
dc.relationWallace, C. C. (2008). New species and records from the Eocene of England and France support early diversification of the coral genus Acropora. Journal of Paleontology, 82(2), 313-328. https://doi.org/10.1666/06-091.1
dc.relationWeber, M. X., & Medina, M. (2012). Chapter Four The Role of Microalgal Symbionts (Symbiodinium) in Holobiont Physiology. En G. Piganeau (Ed.), Advances in Botanical Research (Vol. 64, pp. 119-140). Academic Press. https://doi.org/10.1016/B978-0-12-391499-6.00004-9
dc.relationWijayanti, D. P., Sabdono, A., Widyananto, P. A., Dirgantara, D., & Hidaka, M. (2018). Bacterial symbionts of acroporid corals: Antipathogenic potency against Black Band Disease. Biodiversitas Journal of Biological Diversity, 19(4), 1235-1242. https://doi.org/10.13057/biodiv/d190408
dc.relationWilson, M. A., & Palmer, T. J. (2006). Patterns and Processes in the Ordovician Bioerosion Revolution. Ichnos, 13(3), 109-112. https://doi.org/10.1080/10420940600850505
dc.relationWisshak, M. (2012). Chapter 8 Microbioerosion. En D. Knaust & R. G. Bromley (Eds.), Developments in Sedimentology (Vol. 64, pp. 213-243). Elsevier. https://doi.org/10.1016/B978-0-444-53813-0.00008-3
dc.relationYu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46-49. https://doi.org/10.1016/j.ympev.2015.03.008
dc.relationZhao, M., Riegl, B., Yu, K., Shi, Q., Zhang, Q., Liu, G., Yang, H., & Yan, H. (2016). Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea). Scientific Reports, 6(1), 33324. https://doi.org/10.1038/srep33324
dc.relationZlatarski, V. N. (2010). Palaeobiological perspectives on variability and taxonomy of scleractinian corals. Palaeoworld, 19(3), 333-339. https://doi.org/10.1016/j.palwor.2010.09.012
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDiversity of the endosymbiotic alga Ostreobium in massive corals Porites on both sides of Tropical America
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución