dc.contributor | Velasco Gregory, Mauricio Fernando | |
dc.contributor | Díaz, Mateo | |
dc.contributor | Junca Peláez, Mauricio José | |
dc.creator | Arévalo Ovalle, Diego | |
dc.date.accessioned | 2023-01-30T13:31:44Z | |
dc.date.accessioned | 2023-09-07T00:14:06Z | |
dc.date.available | 2023-01-30T13:31:44Z | |
dc.date.available | 2023-09-07T00:14:06Z | |
dc.date.created | 2023-01-30T13:31:44Z | |
dc.date.issued | 2022-12-06 | |
dc.identifier | http://hdl.handle.net/1992/64305 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727210 | |
dc.description.abstract | En este trabajo se explora las relajaciones para aproximar la solución del problema de minimización de rango mediante la norma nuclear y el método de proyección mixta (propuesto por Bertsimas Dimitris, Cory-Wright Ryan y Pauphilet, Jean), además se propone un nuevo método. Para finalmente aplicar las ideas anteriores en la estimación computacional del número de pitágoras p(3,4). | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Matemáticas | |
dc.relation | F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization, 5 (1995), pp. 13-51. | |
dc.relation | A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine
Learning, 73 (2008), pp. 243-272. | |
dc.relation | B. Barak, J. A. Kelner, and D. Steurer, Dictionary learning and tensor decomposition
via the sum-of-squares method, in STOC, 2015. | |
dc.relation | H. P. Benson, Concave Minimization: Theory, Applications and Algorithms, Springer US,
Boston, MA, 1995, pp. 43-148. | |
dc.relation | D. Bertsimas, R. Cory-Wright, and J. Pauphilet, Mixed-projection conic optimization:
A new paradigm for modeling rank constraints, Operations Research, (2021). | |
dc.relation | A. Bhardwaj, P. Rostalski, and R. Sanyal, Deciding polyhedrality of spectrahedra, 2011. | |
dc.relation | Bharucha-Reid and M. Sambandham, Random polynomials, Probability and mathematical statistics, Academic Press, 1986 | |
dc.relation | G. Blekherman, R. Sinn, G. G. Smith, and M. Velasco, Sums of squares and quadratic
persistence on real projective varieties, Journal of the European Mathematical Society, 24 (2021),
pp. 925-965. | |
dc.relation | G. Blekherman, G. G. Smith, and M. Velasco, Sums of squares and varieties of minimal
degree, J. Amer. Math. Soc., 29 (2016), pp. 893-913. | |
dc.relation | N. Boumal, V. Voroninski, and A. S. Bandeira, The non-convex burer-monteiro approach
works on smooth semidefinite programs, in Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS'16, USA, 2016, Curran Associates Inc.,
pp. 2765-2773. | |
dc.relation | S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization, Math. Program., 95 (2003), pp. 329-357 | |
dc.relation | M. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, Proceedings of
Symposia in Pure Mathematics, American Mathematical Society, United States, 1995, pp. 103-126. | |
dc.relation | L. Chua, D. Plaumann, R. Sinn, and C. Vinzant, Gram spectrahedra, in Ordered Algebraic
Structures and Related Topics, vol. 697 of Contemporary Mathematics, American Mathematical Society, 2017, pp. 81-105. | |
dc.relation | E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected
Applications, Applied Optimization, Springer US, 2002. | |
dc.relation | M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of
mixed-integer nonlinear programs, Mathematical Programming, 36 (1986), pp. 307-339. | |
dc.relation | M. Fazel, Matrix Rank Minimization with Applications, Phd. Thesis, Stanford University, 2002. | |
dc.relation | P. Gahinet and P. Apkarian, A linear matrix inequality approach to h control, International Journal of Robust and Nonlinear Control, 4 (1994), pp. 421-448. | |
dc.relation | D. Henrion, S. Naldi, and M. Din, Exact algorithms for linear matrix inequalities, SIAM Journal on Optimization, 26 (2015). | |
dc.relation | D. R. Hilbert, Über die darstellung definiter formen als summe von formenquadraten, Mathematische Annalen, 32, pp. 342-350. | |
dc.relation | T. Lam, M. Choi, and Z. Dai, The pythagoras number of some affine algebras and local algebras., Journal fur die reine und angewandte Mathematik, 336 (1982), pp. 45-82. | |
dc.relation | A. Lemon, A. M.-C. So, and Y. Ye, Low-rank semidefinite programming: Theory and
applications, Found. Trends Optim., 2 (2016), pp. 1-156. | |
dc.relation | Y. Liu, L. Ong, P. L. Yeoh, P. Sadeghi, J. Kliewer, and S. J. Johnson, Information leakage in index coding with sensitive and non-sensitive messages, 2022 IEEE International
Symposium on Information Theory (ISIT), (2022), pp. 3256-3261. | |
dc.relation | O. L. Mangasarian, Nonlinear Programming, Society for Industrial and Applied Mathematics,
1994. | |
dc.relation | G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of
optimal eigenvalues, Mathematics of Operations Research, 23 (1998), pp. 339-358. | |
dc.relation | M. Ramana and A. J. Goldman, Some geometric results in semidefinite programming, Journal of Global Optimization, 7 (1995), pp. 33-50. | |
dc.relation | B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501. | |
dc.relation | B. Reznick, Sums of even powers of real linear forms, Memoirs of the American Mathematical
Society, 96 (1992), pp. viii+155. | |
dc.relation | C. Scheiderer, Sum of squares length of real forms, Mathematische Zeitschrift, 286 (2017), pp. 559-570. | |
dc.relation | K. Szymiczek, Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms, Algebra, Logic and Applications, Gordon and Breach, 1997. | |
dc.relation | T. Tao, Topics in Random Matrix Theory, Graduate studies in mathematics, American Mathematical Soc., 2012. | |
dc.relation | L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49-95. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Minimización de rango y el número de pitágoras | |
dc.type | Trabajo de grado - Maestría | |