dc.contributorVelasco Gregory, Mauricio Fernando
dc.contributorDíaz, Mateo
dc.contributorJunca Peláez, Mauricio José
dc.creatorArévalo Ovalle, Diego
dc.date.accessioned2023-01-30T13:31:44Z
dc.date.accessioned2023-09-07T00:14:06Z
dc.date.available2023-01-30T13:31:44Z
dc.date.available2023-09-07T00:14:06Z
dc.date.created2023-01-30T13:31:44Z
dc.date.issued2022-12-06
dc.identifierhttp://hdl.handle.net/1992/64305
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727210
dc.description.abstractEn este trabajo se explora las relajaciones para aproximar la solución del problema de minimización de rango mediante la norma nuclear y el método de proyección mixta (propuesto por Bertsimas Dimitris, Cory-Wright Ryan y Pauphilet, Jean), además se propone un nuevo método. Para finalmente aplicar las ideas anteriores en la estimación computacional del número de pitágoras p(3,4).
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Matemáticas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Matemáticas
dc.relationF. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization, 5 (1995), pp. 13-51.
dc.relationA. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning, 73 (2008), pp. 243-272.
dc.relationB. Barak, J. A. Kelner, and D. Steurer, Dictionary learning and tensor decomposition via the sum-of-squares method, in STOC, 2015.
dc.relationH. P. Benson, Concave Minimization: Theory, Applications and Algorithms, Springer US, Boston, MA, 1995, pp. 43-148.
dc.relationD. Bertsimas, R. Cory-Wright, and J. Pauphilet, Mixed-projection conic optimization: A new paradigm for modeling rank constraints, Operations Research, (2021).
dc.relationA. Bhardwaj, P. Rostalski, and R. Sanyal, Deciding polyhedrality of spectrahedra, 2011.
dc.relationBharucha-Reid and M. Sambandham, Random polynomials, Probability and mathematical statistics, Academic Press, 1986
dc.relationG. Blekherman, R. Sinn, G. G. Smith, and M. Velasco, Sums of squares and quadratic persistence on real projective varieties, Journal of the European Mathematical Society, 24 (2021), pp. 925-965.
dc.relationG. Blekherman, G. G. Smith, and M. Velasco, Sums of squares and varieties of minimal degree, J. Amer. Math. Soc., 29 (2016), pp. 893-913.
dc.relationN. Boumal, V. Voroninski, and A. S. Bandeira, The non-convex burer-monteiro approach works on smooth semidefinite programs, in Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS'16, USA, 2016, Curran Associates Inc., pp. 2765-2773.
dc.relationS. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Math. Program., 95 (2003), pp. 329-357
dc.relationM. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, United States, 1995, pp. 103-126.
dc.relationL. Chua, D. Plaumann, R. Sinn, and C. Vinzant, Gram spectrahedra, in Ordered Algebraic Structures and Related Topics, vol. 697 of Contemporary Mathematics, American Mathematical Society, 2017, pp. 81-105.
dc.relationE. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Applied Optimization, Springer US, 2002.
dc.relationM. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs, Mathematical Programming, 36 (1986), pp. 307-339.
dc.relationM. Fazel, Matrix Rank Minimization with Applications, Phd. Thesis, Stanford University, 2002.
dc.relationP. Gahinet and P. Apkarian, A linear matrix inequality approach to h control, International Journal of Robust and Nonlinear Control, 4 (1994), pp. 421-448.
dc.relationD. Henrion, S. Naldi, and M. Din, Exact algorithms for linear matrix inequalities, SIAM Journal on Optimization, 26 (2015).
dc.relationD. R. Hilbert, Über die darstellung definiter formen als summe von formenquadraten, Mathematische Annalen, 32, pp. 342-350.
dc.relationT. Lam, M. Choi, and Z. Dai, The pythagoras number of some affine algebras and local algebras., Journal fur die reine und angewandte Mathematik, 336 (1982), pp. 45-82.
dc.relationA. Lemon, A. M.-C. So, and Y. Ye, Low-rank semidefinite programming: Theory and applications, Found. Trends Optim., 2 (2016), pp. 1-156.
dc.relationY. Liu, L. Ong, P. L. Yeoh, P. Sadeghi, J. Kliewer, and S. J. Johnson, Information leakage in index coding with sensitive and non-sensitive messages, 2022 IEEE International Symposium on Information Theory (ISIT), (2022), pp. 3256-3261.
dc.relationO. L. Mangasarian, Nonlinear Programming, Society for Industrial and Applied Mathematics, 1994.
dc.relationG. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Mathematics of Operations Research, 23 (1998), pp. 339-358.
dc.relationM. Ramana and A. J. Goldman, Some geometric results in semidefinite programming, Journal of Global Optimization, 7 (1995), pp. 33-50.
dc.relationB. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501.
dc.relationB. Reznick, Sums of even powers of real linear forms, Memoirs of the American Mathematical Society, 96 (1992), pp. viii+155.
dc.relationC. Scheiderer, Sum of squares length of real forms, Mathematische Zeitschrift, 286 (2017), pp. 559-570.
dc.relationK. Szymiczek, Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms, Algebra, Logic and Applications, Gordon and Breach, 1997.
dc.relationT. Tao, Topics in Random Matrix Theory, Graduate studies in mathematics, American Mathematical Soc., 2012.
dc.relationL. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49-95.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleMinimización de rango y el número de pitágoras
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución