dc.contributor | Morales Betancourt, Ricardo | |
dc.creator | Beltrán Castañeda, Sara | |
dc.date.accessioned | 2023-07-24T21:28:13Z | |
dc.date.accessioned | 2023-09-07T00:11:57Z | |
dc.date.available | 2023-07-24T21:28:13Z | |
dc.date.available | 2023-09-07T00:11:57Z | |
dc.date.created | 2023-07-24T21:28:13Z | |
dc.date.issued | 2023-07-21 | |
dc.identifier | http://hdl.handle.net/1992/68682 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727186 | |
dc.description.abstract | La calidad del aire en la ciudad de Bogotá se ve afectada particularmente por el material particulado. Este contaminante puede tener un origen en fuentes antropogénicas y naturales. Puede generar problemas de salud pues está asociado con enfermedades pulmonares y cardiacas. Con el propósito de entender las diferencias en las poblaciones de aerosoles en diversos entornos de la ciudad se estudian las concentraciones de los diferentes tamaños de partículas, desde las partículas ultrafinas hasta las partículas más gruesas, que pueden generar impactos en la salud. Se realizaron mediciones en diversos entornos de la ciudad de Bogotá, incluyendo: (1) la Zona industrial, (2) zonas altamente influenciadas por fuentes móviles como un paradero de SITP, una zona adyacente a la carrera séptima y el interior de la estación de Transmilenio Museo Nacional y (3) una zona sub-urbana, menos influenciada por aerosoles urbanos y por fuentes móviles. Se usaron equipos para medir la distribución de tamaños del material particulado como el NanoScan SMPS (tamaños entre 10 a 420 nm), y el Optical Particle Sizer (tamaños entre 0.3 a 10 µm). Adicionalmente se usaron contadores de partículas ultrafinas (CPC) y un equipo de dispersión laser tipo DustTrack. Adicionalmente se usaron equipos como el LI-830 CO2 y MicroAeth para medir otros contaminantes como el CO2 y el carbón negro, respectivamente. El mayor número de partículas registrado por el NanoScan y MicroAeth ocurre en el paradero del SITP. La zona industrial presento las concentraciones más altas en OPS y CPC. El museo Nacional presenta la mayor concentración de PM2.5 registrado por el DustTrack. En la zona industrial, estación del Museo Nacional y SITP la principal fuente de contaminación son fuentes móviles y de motores Diesel que liberan gran número de partículas ultrafinas. Es importante considerar otras variables como el viento, temperatura, radiación solar y arquitectura de la ciudad que pueden afectar la concentración de los contaminantes. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | Aalto, P., Hämeri, K., Paatero, P., Kulmala, M., Bellander, T., Berglind, N., ... & Forastiere, F. (2005). Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations. Journal of the Air & Waste Management Association, 55(8), 1064-1076. https://doi.org/10.1080/10473289.2005.10464702 | |
dc.relation | Abdillah, S. F., & Wang, Y. F. (2022). Ambient ultrafine particle (PM0. 1): Sources, characteristics, measurements and exposure implications on human health. Environmental Research, 115061. https://doi.org/10.1016/j.envres.2022.115061 | |
dc.relation | Apte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A., Marshall, J. D., & Nazaroff, W. W. (2011). Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmospheric Environment, 45(26), 4470-4480. https://doi.org/10.1016/j.atmosenv.2011.05.028 | |
dc.relation | Bedoya-Maya, F., Calatayud, A., & González Mejía, V. (2022). Estimating the effect of road congestion on air quality in Latin America. Transportation Research Part D: Transport and Environment, 113, 103510. https://doi.org/10.1016/j.trd.2022.103510 | |
dc.relation | Bulot, F.M., Johnston, S.J., Basford, P.J., Easton, N.H., Apetroaie-Cristea, M., Foster, G.L. & Loxham, M. (2019) Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 7497. https://doi.org/10.1038/s41598-019-43716-3 | |
dc.relation | Can, A., Rademaker, M., Van Renterghem, T., Mishra, V., Van Poppel, M., Touhafi, A., Theunis, J., De Baets, B., & Botteldooren, D. (2011). Correlation analysis of noise and ultrafine particle counts in a street canyon. Science of The Total Environment, 409(3), 564-572. https://doi.org/10.1016/j.scitotenv.2010.10.037 | |
dc.relation | Cheng, Y.-H., & Yan, J.-W. (2011). Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system. Atmospheric Environment, 45(28), 4882-4891. https://doi.org/10.1016/j.atmosenv.2011.06.011 | |
dc.relation | Dewan, N., Majestic, B. J., Ketterer, M. E., Miller-Schulze, J. P., Shafer, M. M., Schauer, J. J., Solomon, P. A., Artamonova, M., Chen, B. B., Imashev, S. A., & Carmichael, G. R. (2015). Stable isotopes of lead and strontium as tracers of sources of airborne particulate matter in Kyrgyzstan. Atmospheric Environment, 120, 438-446. https://doi.org/10.1016/j.atmosenv.2015.09.017 | |
dc.relation | Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., ... & Apte, J. S. (2020). Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 20(14), 8533-8549. https://doi.org/10.5194/acp-20-8533-2020 | |
dc.relation | Guzman, L. A., Beltran, C., Morales, R., & Sarmiento, O. L. (2023). Inequality in personal exposure to air pollution in transport microenvironments for commuters in Bogotá. Case Studies on Transport Policy, 11, 100963. https://doi.org/10.1016/j.cstp.2023.100963 | |
dc.relation | Harrison, R. M., & Jones, A. M. (2005). Multisite study of particle number concentrations in urban air. Environmental science & technology, 39(16), 6063-6070. https://doi.org/10.1021/es040541e | |
dc.relation | Janssen, N. A. H., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., Fischer, P., Brunekreef, B., & Krzyzanowski, M. (2012). Health effects of black carbon. World Health Organization. Regional Office for Europe. | |
dc.relation | Jasi¿ski, R., Galant-Gobiewska, M., Nowak, M., Kurtyka, K., Kurzawska, P., Maciejewska, M., & Ginter, M. (2021). Emissions and concentrations of particulate matter in Poznan compared with other Polish and European cities. Atmosphere, 12(5), 533. https://doi.org/10.3390/atmos12050533 | |
dc.relation | Kastner-Klein, P., Berkowicz, R., & Britter, R. (2004). The influence of street architecture on flow and dispersion in street canyons. Meteorology and Atmospheric Physics, 87, 121-131.https://doi.org/10.1007/s00703-003-0065-4 | |
dc.relation | Kimbrough, S., Hanley, T., Hagler, G., Baldauf, R., Snyder, M., & Brantley, H. (2018). Influential factors affecting black carbon trends at four sites of differing distance from a major highway in Las Vegas. Air Quality, Atmosphere & Health, 11, 181-196. https://doi.org/10.1007/s11869-017-0519-3 | |
dc.relation | Kumar, P., Pirjola, L., Ketzel, M., & Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources¿a review. Atmospheric Environment, 67, 252-277. https://doi.org/10.1016/j.atmosenv.2012.11.011 | |
dc.relation | Maciejczyk P, Chen L-C, Thurston G. (2021). The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere, 12(9),1086. https://doi.org/10.3390/atmos12091086 | |
dc.relation | Maggiora, C. D., & Lopez-Silva, J. A. (2006). Vulnerability to air pollution in Latin America and the Caribbean Region. World Bank [Banco Mundial]. https://documents1.worldbank.org/curated/en/910171468300539110/pdf/392310PAPER0LAC0Air0pollution01PUBLIC1.pdf | |
dc.relation | Mangones, S. C., Jaramillo, P., Fischbeck, P., & Rojas, N. Y. (2019). Development of a high-resolution traffic emission model: Lessons and key insights from the case of Bogotá, Colombia. Environmental Pollution, 253, 552-559. https://doi.org/10.1016/j.atmosenv.2007.03.011 | |
dc.relation | Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional air quality impact of northern South America biomass burning emissions. Atmospheric Environment, 203, 131-140. https://doi.org/10.1016/j.atmosenv.2019.01.042 | |
dc.relation | Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157, 135-145. https://doi.org/10.1016/j.atmosenv.2017.03.006 | |
dc.relation | Morales-Betancourt, R., Galvis, B., Rincón-Riveros, J.M., Rincón-Caro, M.A., Rodríguez-Valencia, A., Sarmiento, O.L. (2019). Personal exposure to air pollutants in a Bus Rapid Transit System: Impact of fleet age and emission standard. Atmos. Environ. 202, 117-127. https://doi.org/10.1016/j.atmosenv.2019.01.026 | |
dc.relation | OMS. (22 de septiembre de 2021). Contaminación del aire ambiente (exterior). Organización Mundial de la salud. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health | |
dc.relation | Ramírez, O., De La Campa, A. S., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high¿altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142-155. https://doi.org/10.1016/j.envpol.2017.10.045 | |
dc.relation | Reche, C., Moreno, T., Martins, V., Minguillón, M.C., Jones, T., de Miguel, E., Capdevila, M., Centelles, S., & Querol, X. (2017). Factors controlling particle number concentration and size at metro stations. Atmospheric Environment, 156, 169-181. https://doi.org/10.1016/j.atmosenv.2017.03.002 | |
dc.relation | Rojas, N. Y. (2007). Aire y problemas ambientales de Bogotá. Universidad Nacional de Colombia. https://bogota.gov.co/sites/default/files/inlinefiles/aire_y_problemas_ambientales_de_bogota.pdf | |
dc.relation | Schneider, I. L., Teixeira, E. C., Oliveira, L. F. S., & Wiegand, F. (2015). Atmospheric particle number concentration and size distribution in a traffic¿impacted area. Atmospheric Pollution Research, 6(5), 877-885. https://doi.org/10.5094/APR.2015.097 | |
dc.relation | Scientific Committee on Emerging and Newly Identified Health Risks [SCENIHR]. (2006). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission Health & Consumer Protection Directorate-General. https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf | |
dc.relation | Tomson, M., Kumar, P., Kalaiarasan, G., Zavala-Reyes, J. C., Chiapasco, M., Sephton, M. A., Young, G., & Porter, A. E. (2023). Pollutant concentrations and exposure variability in four urban microenvironments of London. Atmospheric Environment, 298, 119624. https://doi.org/10.1016/j.atmosenv.2023.119624 | |
dc.relation | United States Environmental protection Agency [EPA]. (s.f.). Health and Environmental Effects of Particulate Matter (PM). United States Environmental protection Agency. https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm | |
dc.relation | Vargas, F. A., Rojas, N. Y., Pachon, J. E., & Russell, A. G. (2012). PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 3(1), 72-80. https://doi.org/10.5094/APR.2012.006 | |
dc.relation | Wu, PC., Huang, KF. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci Rep 11, 7593. https://doi.org/10.1038/s41598-021-87051-y | |
dc.relation | Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of thoracic disease, 8(1), E69-E74. https://doi.org/10.3978/j.issn.2072- 1439.2016.01.19 | |
dc.relation | Young, L. H., & Keeler, G. J. (2004). Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. Journal of the Air & Waste Management Association, 54(9), 1079-1090.https://doi.org/10.1080/10473289.2004.10470987 | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Comparación de concentración de material particulado y distribución por tamaño en cuatro zonas de Bogotá | |
dc.type | Trabajo de grado - Pregrado | |