dc.contributorLozano Garzón, Carlos Andrés
dc.contributorMontoya Orozco, Germán Adolfo
dc.creatorQuiroga Sánchez, Laura Gabriela
dc.date.accessioned2023-07-11T18:21:48Z
dc.date.accessioned2023-09-07T00:11:00Z
dc.date.available2023-07-11T18:21:48Z
dc.date.available2023-09-07T00:11:00Z
dc.date.created2023-07-11T18:21:48Z
dc.date.issued2023-07-07
dc.identifierhttp://hdl.handle.net/1992/68320
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727169
dc.description.abstractWith IoT networks' rapid advancement and significant cybersecurity challenges, the proposal and analysis of models capable of studying malware propagation within these structures have become highly relevant. This paper aims to formulate and implement a SEIRS-NIMFA model to analyze the propagation of malware infections with a latency period. To achieve this, a SEIRS model was mathematically described using an individual-based approach and then implemented using Python. This study examines the effects of varying network topology, the initially infected device, and the model parameters on the propagation dynamics. The results demonstrate that this novel model can effectively support the decision-making processes for implementing security measures in real-life scenarios. Furthermore, the model and its implementation are open to further extensions, enhancing their potential applicability.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationSonicWall. Mid-year update: 2022 SonicWall Cyber Threat Report. https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf. (2022-MidYearThreatReport-JK-6641). 2022.
dc.relationA. Abusitta et al. 'Deep learning-enabled anomaly detection for IoT systems'. In: Internet of Things 21(2023). DOI: 10.1016/j.iot.2022.100656.
dc.relationM. Antonakakis et al. 'Understanding the Mirai Botnet'. In: 26th USENIX Security Symposium (USENIX Security 17). USENIX Association. Vancouver, BC, 2017, pp. 1093-1110.
dc.relationP. Van Mieghem. 'The N-intertwined SIS epidemic network model'. In: Computing 93 (2011), pp. 147-169. DOI: 10.1007/s00607-011-0155-y
dc.relationI. Martínez et al. 'MalSEIRS: Forecasting Malware Spread Based on Compartmental Models in Epidemiology'. In: Complexity 2021 (2021), Article ID 5415724. DOI: 10.1155/2021/5415724.
dc.relationA. Mahboubi, S. Camtepe, and K. Ansari. 'Stochastic modeling of IoT botnet spread: A short survey on mobile malware spread modeling'. In: IEEE Access (2020). DOI: 10.1109/ACCESS.2020.3044277.
dc.relationS. Bonaccorsi and S. Turri. 'Deterministic and Stochastic Mean-Field SIRS Models on Heterogeneous Networks'. In: Discrete and Continuous Models in the Theory of Networks. Ed. by Fatihcan M. Atay, Pavel B. Kurasov, and Delio Mugnolo. Vol. 281. Birkhauser Cham, 2020, pp. 67-89. DOI: 10.1007/978-3-030-44097-8
dc.relationK. L. Lueth et al. Market Insights for the Internet of Things: State of IoT - Spring 2022. IoT Analytics. 2022. URL: https://iot-analytics.com/product/state-of-iot-spring-2022/.
dc.relationP. Kumari and A. K. Jain. 'A comprehensive study of DDoS attacks over IoT network and their countermeasures'. In: Computers and Security 127 (2023). DOI: 10.1016/j.cose.2023.103096.
dc.relationA. A. Haghrah, S. Ghaemi, and M. A. Badamchizadeh. 'Fuzzy-SIRD model: Forecasting COVID-19 death tolls considering governments intervention'. In: Artificial Intelligence in Medicine 134 (2022). DOI: 10.1016/j.artmed.2022.102422.
dc.relationN. Groves-Kirkby et al. 'Large-scale calibration and simulation of COVID-19 epidemiologic scenarios to support healthcare planning'. In: Epidemics 42 (2023). DOI: 10.1016/j.epidem.2022.100662.
dc.relationM. Galván. 'NIMFA Epidemiological model for studying malware behavior in IoT Networks'. Undergraduate thesis. Bogota, Colombia, 2021.
dc.relationJ. Flórez. 'Modelo epidemiológico SIS para estudiar el comportamiento del malware en redes IoT'. Undergraduate thesis. Bogota, Colombia, 2021.
dc.relationO. N. Bjørnstad et al. 'The SEIRS model for infectious disease dynamics'. In: Nature Methods 17.6 (2020), pp. 557-558. DOI: 10.1038/s41592-020-0856-2.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleThe SEIRS-NIMFA compartmental epidemic model for the analysis of IoT malware propagation
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución