dc.contributor | Santos Vega, Mauricio | |
dc.contributor | Bloch Morel, Natasha Ivonne | |
dc.contributor | Grupo de Investigación de Biología Matemática y Computacional (BIOMAC | |
dc.creator | Suárez Salazar, Carlos David | |
dc.date.accessioned | 2024-02-01 | |
dc.date.accessioned | 2023-09-07T00:10:41Z | |
dc.date.available | 2024-02-01 | |
dc.date.available | 2023-09-07T00:10:41Z | |
dc.date.created | 2024-02-01 | |
dc.date.issued | 2023-06-05 | |
dc.identifier | http://hdl.handle.net/1992/68909 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727164 | |
dc.description.abstract | Understanding the genetic structure of Plasmodium falciparum populations, the parasite responsible for malaria, is crucial for developing effective disease control and eradication strategies. In this study, we aimed to investigate how populations, epidemiological conditions, and transmission patterns define the
evolutionary trajectories of these parasites. To address this question, we developed a stochastic agent-based model that combines disease transmission's genetic and epidemiological dynamics. This allows us to assess how population genetic structure is shaped by varying initial genetic diversity and biting rates. In addition, we discovered that the initial genetic diversity of the population had a modulating effect on the genetic response of the populations, serving as a factor that either maintains or reduces population genetic distance, as well as generating diversity within the population. Our findings highlight the importance of these dual analyses that incorporate genetic dynamics into the disease transmission process, aiming to establish a platform where sequenced parasite genomes can be used to understand these populations' evolutionary status and genetic exchange. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | Ashley EA, Pyae Phyo A, Woodrow CJ. 2018. Malaria. The Lancet. 391:1608-1621 | |
dc.relation | Carroll D. 2013. Genetic recombination, In: Maloy S, Hughes K, editors, Brenner's Encyclopedia of Genetics (Second Edition), Academic Press. San Diego. second edition edition. pp. 277-280. | |
dc.relation | Chitnis N, Hyman JM, Cushing JM. 2008. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of mathematical biology. 70:1272. | |
dc.relation | Consortium P et al. 2016. The pf3k project (2016): pilot data release 5, 2016. URL www. malariagen. net/data/pf3k-5. | |
dc.relation | Dong S, Dong Y, Simões ML, Dimopoulos G. 2021. Mosquito transgenesis for malaria control. Trends in parasitology. | |
dc.relation | Feng X, Xia ZG, Feng J, Zhang L, Yan H, Tang L, Zhou XN, Zhou S. 2020. The contributions and achievements on malaria control and forthcoming elimination in china over the past 70 years by nipd-ctdr. Advances in parasitology. 110:63-105. | |
dc.relation | Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry. 81:2340-2361. | |
dc.relation | Mayne B. 1922. How long does a mosquito retain malaria parasites? Public Health Reports (1896-1970). pp. 1059-1063. | |
dc.relation | Milner DA. 2018. Malaria pathogenesis. Cold Spring Harbor perspectives in medicine. 8:a025569. | |
dc.relation | Mu J, Awadalla P, Duan J, McGee KM, Joy DA, McVean GAT, Su Xz. 2005. Recombination hotspots and population structure in plasmodium falciparum. PLoS biology. 3:e335 | |
dc.relation | Okuneye K, Eikenberry SE, Gumel AB. 2019. Weather-driven malaria transmission model with gonotrophic and sporogonic cycles. Journal of biological dynamics. 13:288-324. | |
dc.relation | Organization WH et al. 2020. World malaria report 2020: 20 years of global progress and challenges, In: | |
dc.relation | Phillips M, Burrows J, Manyando C, van Huijsduijnen R, Van Voorhis W. 2017. Malaria. Nat Rev Dis Primers. 3:406. | |
dc.relation | Plewes K, Leopold SJ, Kingston HW, Dondorp AM. 2019. Malaria: what's new in the management of malaria? Infectious Disease Clinics. 33:39-60 | |
dc.relation | Venugopal K, Hentzschel F, Valkiunas G, Marti M. 2020. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology. 18:177-189 | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | Coupling genetic and epidemiological dynamics to unravel parasite structure in transmission gradients | |
dc.type | Trabajo de grado - Maestría | |