dc.contributorRivas Hernández, Ricardo Eusebio
dc.contributorPortilla Salinas, Jaime Antonio
dc.contributorRomán Ochoa, Yony
dc.contributorGrupo de Investigación Química Analítica Aplicada
dc.creatorCampo Serrano, Juana Del Pilar
dc.date.accessioned2023-06-29T21:05:01Z
dc.date.accessioned2023-09-07T00:05:00Z
dc.date.available2023-06-29T21:05:01Z
dc.date.available2023-09-07T00:05:00Z
dc.date.created2023-06-29T21:05:01Z
dc.date.issued2023-06-02
dc.identifierhttp://hdl.handle.net/1992/67995
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8727097
dc.description.abstractLa contaminación con metales pesados representa un riesgo medioambiental considerable, por consiguiente, existe una preocupación mundial por determinar la concentración de elementos como Cd, Cu y Pb en cuerpos de agua. En este contexto, está investigación propone estudiar la viabilidad de un método colorimétrico muy económico y práctico (usando los componentes RGB obtenidos de una imagen fotográfica) para la detección y una eventual determinación simultánea de Cu, Cd y Pb en muestras de agua.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherQuímica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationWoolf, A. D. Itai-Itai Disease-Japan, 1955. In History of Modern Clinical Toxicology; Elsevier, 2021; pp 109-120. https://doi.org/10.1016/B978-0-12-822218-8.00024-7.
dc.relationNordberg, G. F. Historical Perspectives on Cadmium Toxicology. Toxicology and Applied Pharmacology. August 1, 2009, pp 192-200. https://doi.org/10.1016/j.taap.2009.03.015.
dc.relationKumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; Khan, S. A.; Yadav, K. K. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health. MDPI AG April 1, 2020. https://doi.org/10.3390/ijerph17072179.
dc.relationMitra, S.; Chakraborty, A. J.; Tareq, A. M.; Emran, T. bin; Nainu, F.; Khusro, A.; Idris, A. M.; Khandaker, M. U.; Osman, H.; Alhumaydhi, F. A.; Simal-Gandara, J. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J King Saud Univ Sci 2022, 34 (3). https://doi.org/10.1016/j.jksus.2022.101865.
dc.relationKubier, A.; Wilkin, R. T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Applied Geochemistry. Elsevier Ltd September 1, 2019. https://doi.org/10.1016/j.apgeochem.2019.104388.
dc.relationBriffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. Elsevier Ltd September 1, 2020. https://doi.org/10.1016/j.heliyon.2020.e04691.
dc.relationBansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosensors and Bioelectronics. Elsevier Ltd August 15, 2017, pp 443-455. https://doi.org/10.1016/j.bios.2017.03.031.
dc.relationChen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. Journal of Hazardous Materials. Elsevier B.V. January 5, 2023. https://doi.org/10.1016/j.jhazmat.2022.129889.
dc.relationJozic, M.; Peer, T.; Malissa, H. Rapid Test Methods for the Field Screening of Heavy Metals in Soil Samples. Water Air Soil Pollut 2009, 199 (1-4), 291-300. https://doi.org/10.1007/s11270-008-9878-6.
dc.relationLow, S. C.; Azmi, N. A. binti; Ong, C. S.; Lim, J. K. Environmental Monitoring of Trace Metal Pollutants Using Cellulosic-Paper Incorporating Color Change of Azo- 27 Chromophore. Environmental Science and Pollution Research 2022, 29 (47), 71614-71631. https://doi.org/10.1007/s11356-022-20706-z.
dc.relationZhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal Preparation of Cellulose-Based Colorimetric Sensor for Heavy Metal Ion Detection. Carbohydr Polym 2020, 236. https://doi.org/10.1016/j.carbpol.2020.116037.
dc.relationKheamphet, P.; Masawat, P. A Simple and Cost-Effective Smartphone-Based Digital Imaging Device for the Quantification of Selected Heavy Metals in Thai Rice. Analytical Methods 2022, 14 (2), 165-173. https://doi.org/10.1039/d1ay01816g.
dc.relationSato, N.; Mori, M.; Itabashi, H. Cloud Point Extraction of Cu(II) Using a Mixture of Triton X-100 and Dithizone with a Salting-out Effect and Its Application to Visual Determination. Talanta 2013, 117, 376-381. https://doi.org/10.1016/j.talanta.2013.08.025.
dc.relationJalili, V.; Barkhordari, A.; Ghiasvand, A. New Extraction Media in Microextraction Techniques. A Review of Reviews. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2019.104386.
dc.relationHalko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction. J Chromatogr A 2023, 1701, 464053. https://doi.org/https://doi.org/10.1016/j.chroma.2023.464053
dc.relationSnigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent Innovations in Cloud Point Extraction towards a More Efficient and Environmentally Friendly Procedure. TrAC Trends in Analytical Chemistry 2023, 117113. https://doi.org/https://doi.org/10.1016/j.trac.2023.117113.
dc.relationGavazov, K. B.; Hagarová, I.; Halko, R.; Andruch, V. Recent Advances in the Application of Nanoparticles in Cloud Point Extraction. Journal of Molecular Liquids. 2019. https://doi.org/10.1016/j.molliq.2019.02.071.
dc.relationSamaddar, P.; Sen, K. Cloud Point Extraction: A Sustainable Method of Elemental Preconcentration and Speciation. Journal of Industrial and Engineering Chemistry. 2014. https://doi.org/10.1016/j.jiec.2013.10.033.
dc.relationWen, X.; Deng, Q.; Ji, S.; Yang, S.; Peng, L. Design of Rapidly Synergistic Cloud Point Extraction of Ultra-Trace Lead Combined with Flame Atomic Absorption Spectrometry Determination. Microchemical Journal 2012, 100 (1), 31-35. https://doi.org/10.1016/j.microc.2011.08.005.
dc.relationNaeemullah; Kazi, T. G.; Tuzen, M. Development of Novel Simultaneous Single Step and Multistep Cloud Point Extraction Method for Silver, Cadmium and Nickel in Water Samples. Journal of Industrial and Engineering Chemistry 2016, 35, 93-98. https://doi.org/10.1016/j.jiec.2015.12.022.
dc.relationGarrido, M.; Di Nezio, M. S.; Lista, A. G.; Palomeque, M.; Fernández Band, B. S. Cloud Point Extraction/Preconcentration on-Line Flow Injection Method for Mercury Determination. Anal Chim Acta 2004, 502 (2), 173-177. https://doi.org/10.1016/j.aca.2003.09.070.
dc.relationPytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud Point Extraction of Metal Ions: A Review. Talanta. 2013. https://doi.org/10.1016/j.talanta.2013.02.037.
dc.relationMortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2020.105055.
dc.relationArya, S. S.; Kaimal, A. M.; Chib, M.; Sonawane, S. K.; Show, P. L. Novel, Energy Efficient and Green Cloud Point Extraction: Technology and Applications in Food Processing. Journal of Food Science and Technology. 2019. https://doi.org/10.1007/s13197-018- 3546-7.
dc.relationMondal, S.; Nayak, L.; Rahaman, M.; Aldalbahi, A.; Chaki, T. K.; Khastgir, D.; Das, N. C. An Effective Strategy to Enhance Mechanical, Electrical, and Electromagnetic Shielding Effectiveness of Chlorinated Polyethylene-Carbon Nanofiber Nanocomposites. Compos B Eng 2017, 109. https://doi.org/10.1016/j.compositesb.2016.10.049.
dc.relationLiu, J.-L.; Zhou, X.-M.; Sun, M.; Jia, A.-Q.; Shi, H.-T.; Zhang, Q.-F. A Resorcinarene Based Chelating Agent for Selective Cloud Point Extraction of Pb2+ Ions in Water: Synthesis, Structural Characterization and Analytical Applications. Arabian Journal of Chemistry 2023, 16 (7), 104866. https://doi.org/https://doi.org/10.1016/j.arabjc.2023.104866.
dc.relationFan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement (Lond) 2021, 171. https://doi.org/10.1016/j.measurement.2020.108829.
dc.relationCapitán-Vallvey, L. F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M. M.; Palma, A. J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Analytica Chimica Acta. 2015. https://doi.org/10.1016/j.aca.2015.10.009.
dc.relationChristodouleas, D. C.; Nemiroski, A.; Kumar, A. A.; Whitesides, G. M. Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry. Anal Chem 2015, 87 (18). https://doi.org/10.1021/acs.analchem.5b01612.
dc.relationSoda, Y.; Bakker, E. Quantification of Colorimetric Data for Paper-Based Analytical Devices. ACS Sensors. 2019. https://doi.org/10.1021/acssensors.9b01802.
dc.relationYusufu, D.; Mills, A. Spectrophotometric and Digital Colour Colourimetric (DCC) Analysis of Colour-Based Indicators. Sens Actuators B Chem 2018, 273. https://doi.org/10.1016/j.snb.2018.06.131
dc.relationFeng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric Sensing of Anions in Water Using Ratiometric Indicator-Displacement Assay. Anal Chim Acta 2012, 743. https://doi.org/10.1016/j.aca.2012.06.041.
dc.relationLopez-Molinero, A.; Liñan, D.; Sipiera, D.; Falcon, R. Chemometric Interpretation of Digital Image Colorimetry. Application for Titanium Determination in Plastics. Microchemical Journal 2010, 96 (2). https://doi.org/10.1016/j.microc.2010.06.013.
dc.relationDos Santos Benedetti, L. P.; Dos Santos, V. B.; Silva, T. A.; Filho, E. B.; Martins, V. L.; Fatibello-Filho, O. A Digital Image-Based Method Employing a Spot-Test for Quantification of Ethanol in Drinks. Analytical Methods 2015, 7 (10). https://doi.org/10.1039/c5ay00529a.
dc.relationNtoi, L. L. A.; Buitendach, B. E.; Von Eschwege, K. G. Seven Chromisms Associated with Dithizone. Journal of Physical Chemistry A 2017, 121 (48), 9243-9251. https://doi.org/10.1021/acs.jpca.7b09490.
dc.relationRauf, M. A.; Hisaindee, S.; Graham, J. P.; Al-Zamly, A. Effect of Various Solvents on the Absorption Spectra of Dithizone and DFT Calculations. J Mol Liq 2015, 211, 332-337. https://doi.org/10.1016/j.molliq.2015.07.039.
dc.relationRice, C. R.; Faulkner, R. A.; Jewsbury, R. A.; Bullock, S.; Dunmore, R. A Structural Study of Dithizone Coordination Chemistry. CrystEngComm 2017, 19 (25), 3414-3419. https://doi.org/10.1039/c7ce00580f.
dc.relationGreen, T. L. C.; Nelson, P. N.; Lawrence, M. A. W. Spectroscopic, Optical Sensing and RedOx Behaviour of 1, 5-Diphenylcarbazone. J Mol Struct 2019, 1195, 426-434. https://doi.org/10.1016/j.molstruc.2019.06.011.
dc.relationHuang, Y.; Cheng, P.; Tan, C. Visual Artificial Tongue for Identification of Various Metal Ions in Mixtures and Real Water Samples: A Colorimetric Sensor Array Using off-the Shelf Dyes. RSC Adv 2019, 9 (47). https://doi.org/10.1039/c9ra05983k.
dc.relationLeng, Y.; Qian, S.; Wang, Y.; Lu, C.; Ji, X.; Lu, Z.; Lin, H. Single-Indicator-Based Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and Understanding the Foundations from Experiment to Simulation. Sci Rep 2016, 6. https://doi.org/10.1038/srep25354.
dc.relationCheng, G.; He, M.; Peng, H.; Hu, B. Dithizone Modified Magnetic Nanoparticles for Fast and Selective Solid Phase Extraction of Trace Elements in Environmental and Biological Samples Prior to Their Determination by ICP-OES. Talanta 2012, 88, 507-515. https://doi.org/https://doi.org/10.1016/j.talanta.2011.11.025.
dc.relationLi, X.; Li, S.; Liu, Q.; Cui, Z.; Chen, Z. A Triple-Channel Colorimetric Sensor Array for Identification of Biothiols Based on Color RGB (Red/Green/Blue) as Signal Readout. ACS Sustain Chem Eng 2019, 7 (20). https://doi.org/10.1021/acssuschemeng.9b04740.
dc.relationPan, Y.; Liu, X.; Qian, L.; Cui, Y.; Zheng, X.; Kang, Y.; Fu, X.; Wang, S.; Wang, P.; Wang, D. A Hand-Held Optoelectronic Tongue for the Identification of Heavy-Metal Ions. Sens Actuators B Chem 2022, 352. https://doi.org/10.1016/j.snb.2021.130971.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleExploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución