dc.contributor | Rivas Hernández, Ricardo Eusebio | |
dc.contributor | Portilla Salinas, Jaime Antonio | |
dc.contributor | Román Ochoa, Yony | |
dc.contributor | Grupo de Investigación Química Analítica Aplicada | |
dc.creator | Campo Serrano, Juana Del Pilar | |
dc.date.accessioned | 2023-06-29T21:05:01Z | |
dc.date.accessioned | 2023-09-07T00:05:00Z | |
dc.date.available | 2023-06-29T21:05:01Z | |
dc.date.available | 2023-09-07T00:05:00Z | |
dc.date.created | 2023-06-29T21:05:01Z | |
dc.date.issued | 2023-06-02 | |
dc.identifier | http://hdl.handle.net/1992/67995 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8727097 | |
dc.description.abstract | La contaminación con metales pesados representa un riesgo medioambiental considerable,
por consiguiente, existe una preocupación mundial por determinar la concentración de
elementos como Cd, Cu y Pb en cuerpos de agua. En este contexto, está investigación
propone estudiar la viabilidad de un método colorimétrico muy económico y práctico
(usando los componentes RGB obtenidos de una imagen fotográfica) para la detección y una
eventual determinación simultánea de Cu, Cd y Pb en muestras de agua. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | Woolf, A. D. Itai-Itai Disease-Japan, 1955. In History of Modern Clinical Toxicology;
Elsevier, 2021; pp 109-120. https://doi.org/10.1016/B978-0-12-822218-8.00024-7. | |
dc.relation | Nordberg, G. F. Historical Perspectives on Cadmium Toxicology. Toxicology and
Applied Pharmacology. August 1, 2009, pp 192-200.
https://doi.org/10.1016/j.taap.2009.03.015. | |
dc.relation | Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A. K.; Shabnam, A. A.;
Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; Khan, S. A.;
Yadav, K. K. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable
Remediation Approaches. International Journal of Environmental Research and Public
Health. MDPI AG April 1, 2020. https://doi.org/10.3390/ijerph17072179. | |
dc.relation | Mitra, S.; Chakraborty, A. J.; Tareq, A. M.; Emran, T. bin; Nainu, F.; Khusro, A.; Idris, A.
M.; Khandaker, M. U.; Osman, H.; Alhumaydhi, F. A.; Simal-Gandara, J. Impact of Heavy
Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter
the Toxicity. J King Saud Univ Sci 2022, 34 (3).
https://doi.org/10.1016/j.jksus.2022.101865. | |
dc.relation | Kubier, A.; Wilkin, R. T.; Pichler, T. Cadmium in Soils and Groundwater: A Review.
Applied Geochemistry. Elsevier Ltd September 1, 2019.
https://doi.org/10.1016/j.apgeochem.2019.104388. | |
dc.relation | Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their
Toxicological Effects on Humans. Heliyon. Elsevier Ltd September 1, 2020.
https://doi.org/10.1016/j.heliyon.2020.e04691. | |
dc.relation | Bansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various
Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing
Platforms. Biosensors and Bioelectronics. Elsevier Ltd August 15, 2017, pp 443-455.
https://doi.org/10.1016/j.bios.2017.03.031. | |
dc.relation | Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal
Ions with Various Chromogenic Materials: Strategies and Applications. Journal of
Hazardous Materials. Elsevier B.V. January 5, 2023.
https://doi.org/10.1016/j.jhazmat.2022.129889. | |
dc.relation | Jozic, M.; Peer, T.; Malissa, H. Rapid Test Methods for the Field Screening of Heavy
Metals in Soil Samples. Water Air Soil Pollut 2009, 199 (1-4), 291-300.
https://doi.org/10.1007/s11270-008-9878-6. | |
dc.relation | Low, S. C.; Azmi, N. A. binti; Ong, C. S.; Lim, J. K. Environmental Monitoring of Trace
Metal Pollutants Using Cellulosic-Paper Incorporating Color Change of Azo-
27
Chromophore. Environmental Science and Pollution Research 2022, 29 (47), 71614-71631. https://doi.org/10.1007/s11356-022-20706-z. | |
dc.relation | Zhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal Preparation of Cellulose-Based
Colorimetric Sensor for Heavy Metal Ion Detection. Carbohydr Polym 2020, 236.
https://doi.org/10.1016/j.carbpol.2020.116037. | |
dc.relation | Kheamphet, P.; Masawat, P. A Simple and Cost-Effective Smartphone-Based Digital
Imaging Device for the Quantification of Selected Heavy Metals in Thai Rice. Analytical
Methods 2022, 14 (2), 165-173. https://doi.org/10.1039/d1ay01816g. | |
dc.relation | Sato, N.; Mori, M.; Itabashi, H. Cloud Point Extraction of Cu(II) Using a Mixture of Triton
X-100 and Dithizone with a Salting-out Effect and Its Application to Visual
Determination. Talanta 2013, 117, 376-381.
https://doi.org/10.1016/j.talanta.2013.08.025. | |
dc.relation | Jalili, V.; Barkhordari, A.; Ghiasvand, A. New Extraction Media in Microextraction
Techniques. A Review of Reviews. Microchemical Journal. 2020.
https://doi.org/10.1016/j.microc.2019.104386. | |
dc.relation | Halko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction.
J Chromatogr A 2023, 1701, 464053.
https://doi.org/https://doi.org/10.1016/j.chroma.2023.464053 | |
dc.relation | Snigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent Innovations
in Cloud Point Extraction towards a More Efficient and Environmentally Friendly
Procedure. TrAC Trends in Analytical Chemistry 2023, 117113.
https://doi.org/https://doi.org/10.1016/j.trac.2023.117113. | |
dc.relation | Gavazov, K. B.; Hagarová, I.; Halko, R.; Andruch, V. Recent Advances in the Application
of Nanoparticles in Cloud Point Extraction. Journal of Molecular Liquids. 2019.
https://doi.org/10.1016/j.molliq.2019.02.071. | |
dc.relation | Samaddar, P.; Sen, K. Cloud Point Extraction: A Sustainable Method of Elemental
Preconcentration and Speciation. Journal of Industrial and Engineering Chemistry.
2014. https://doi.org/10.1016/j.jiec.2013.10.033. | |
dc.relation | Wen, X.; Deng, Q.; Ji, S.; Yang, S.; Peng, L. Design of Rapidly Synergistic Cloud Point
Extraction of Ultra-Trace Lead Combined with Flame Atomic Absorption Spectrometry
Determination. Microchemical Journal 2012, 100 (1), 31-35.
https://doi.org/10.1016/j.microc.2011.08.005. | |
dc.relation | Naeemullah; Kazi, T. G.; Tuzen, M. Development of Novel Simultaneous Single Step
and Multistep Cloud Point Extraction Method for Silver, Cadmium and Nickel in Water
Samples. Journal of Industrial and Engineering Chemistry 2016, 35, 93-98.
https://doi.org/10.1016/j.jiec.2015.12.022. | |
dc.relation | Garrido, M.; Di Nezio, M. S.; Lista, A. G.; Palomeque, M.; Fernández Band, B. S. Cloud Point Extraction/Preconcentration on-Line Flow Injection Method for Mercury
Determination. Anal Chim Acta 2004, 502 (2), 173-177.
https://doi.org/10.1016/j.aca.2003.09.070. | |
dc.relation | Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud Point Extraction of Metal Ions: A Review. Talanta. 2013.
https://doi.org/10.1016/j.talanta.2013.02.037. | |
dc.relation | Mortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A
Critical Review. Microchemical Journal. 2020.
https://doi.org/10.1016/j.microc.2020.105055. | |
dc.relation | Arya, S. S.; Kaimal, A. M.; Chib, M.; Sonawane, S. K.; Show, P. L. Novel, Energy Efficient
and Green Cloud Point Extraction: Technology and Applications in Food Processing.
Journal of Food Science and Technology. 2019. https://doi.org/10.1007/s13197-018-
3546-7. | |
dc.relation | Mondal, S.; Nayak, L.; Rahaman, M.; Aldalbahi, A.; Chaki, T. K.; Khastgir, D.; Das, N. C.
An Effective Strategy to Enhance Mechanical, Electrical, and Electromagnetic
Shielding Effectiveness of Chlorinated Polyethylene-Carbon Nanofiber
Nanocomposites. Compos B Eng 2017, 109.
https://doi.org/10.1016/j.compositesb.2016.10.049. | |
dc.relation | Liu, J.-L.; Zhou, X.-M.; Sun, M.; Jia, A.-Q.; Shi, H.-T.; Zhang, Q.-F. A Resorcinarene Based
Chelating Agent for Selective Cloud Point Extraction of Pb2+ Ions in Water: Synthesis,
Structural Characterization and Analytical Applications. Arabian Journal of Chemistry
2023, 16 (7), 104866. https://doi.org/https://doi.org/10.1016/j.arabjc.2023.104866. | |
dc.relation | Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for
Chemical Analysis: A Review. Measurement (Lond) 2021, 171.
https://doi.org/10.1016/j.measurement.2020.108829. | |
dc.relation | Capitán-Vallvey, L. F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M. M.; Palma, A. J.
Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial
Review. Analytica Chimica Acta. 2015. https://doi.org/10.1016/j.aca.2015.10.009. | |
dc.relation | Christodouleas, D. C.; Nemiroski, A.; Kumar, A. A.; Whitesides, G. M. Broadly Available
Imaging Devices Enable High-Quality Low-Cost Photometry. Anal Chem 2015, 87 (18).
https://doi.org/10.1021/acs.analchem.5b01612. | |
dc.relation | Soda, Y.; Bakker, E. Quantification of Colorimetric Data for Paper-Based Analytical
Devices. ACS Sensors. 2019. https://doi.org/10.1021/acssensors.9b01802. | |
dc.relation | Yusufu, D.; Mills, A. Spectrophotometric and Digital Colour Colourimetric (DCC)
Analysis of Colour-Based Indicators. Sens Actuators B Chem 2018, 273.
https://doi.org/10.1016/j.snb.2018.06.131 | |
dc.relation | Feng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric Sensing of Anions in
Water Using Ratiometric Indicator-Displacement Assay. Anal Chim Acta 2012, 743.
https://doi.org/10.1016/j.aca.2012.06.041. | |
dc.relation | Lopez-Molinero, A.; Liñan, D.; Sipiera, D.; Falcon, R. Chemometric Interpretation of
Digital Image Colorimetry. Application for Titanium Determination in Plastics.
Microchemical Journal 2010, 96 (2). https://doi.org/10.1016/j.microc.2010.06.013. | |
dc.relation | Dos Santos Benedetti, L. P.; Dos Santos, V. B.; Silva, T. A.; Filho, E. B.; Martins, V. L.;
Fatibello-Filho, O. A Digital Image-Based Method Employing a Spot-Test for
Quantification of Ethanol in Drinks. Analytical Methods 2015, 7 (10).
https://doi.org/10.1039/c5ay00529a. | |
dc.relation | Ntoi, L. L. A.; Buitendach, B. E.; Von Eschwege, K. G. Seven Chromisms Associated with
Dithizone. Journal of Physical Chemistry A 2017, 121 (48), 9243-9251.
https://doi.org/10.1021/acs.jpca.7b09490. | |
dc.relation | Rauf, M. A.; Hisaindee, S.; Graham, J. P.; Al-Zamly, A. Effect of Various Solvents on the
Absorption Spectra of Dithizone and DFT Calculations. J Mol Liq 2015, 211, 332-337.
https://doi.org/10.1016/j.molliq.2015.07.039. | |
dc.relation | Rice, C. R.; Faulkner, R. A.; Jewsbury, R. A.; Bullock, S.; Dunmore, R. A Structural Study
of Dithizone Coordination Chemistry. CrystEngComm 2017, 19 (25), 3414-3419.
https://doi.org/10.1039/c7ce00580f. | |
dc.relation | Green, T. L. C.; Nelson, P. N.; Lawrence, M. A. W. Spectroscopic, Optical Sensing and
RedOx Behaviour of 1, 5-Diphenylcarbazone. J Mol Struct 2019, 1195, 426-434.
https://doi.org/10.1016/j.molstruc.2019.06.011. | |
dc.relation | Huang, Y.; Cheng, P.; Tan, C. Visual Artificial Tongue for Identification of Various Metal
Ions in Mixtures and Real Water Samples: A Colorimetric Sensor Array Using off-the Shelf Dyes. RSC Adv 2019, 9 (47). https://doi.org/10.1039/c9ra05983k. | |
dc.relation | Leng, Y.; Qian, S.; Wang, Y.; Lu, C.; Ji, X.; Lu, Z.; Lin, H. Single-Indicator-Based
Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and
Understanding the Foundations from Experiment to Simulation. Sci Rep 2016, 6.
https://doi.org/10.1038/srep25354. | |
dc.relation | Cheng, G.; He, M.; Peng, H.; Hu, B. Dithizone Modified Magnetic Nanoparticles for Fast
and Selective Solid Phase Extraction of Trace Elements in Environmental and Biological
Samples Prior to Their Determination by ICP-OES. Talanta 2012, 88, 507-515.
https://doi.org/https://doi.org/10.1016/j.talanta.2011.11.025. | |
dc.relation | Li, X.; Li, S.; Liu, Q.; Cui, Z.; Chen, Z. A Triple-Channel Colorimetric Sensor Array for
Identification of Biothiols Based on Color RGB (Red/Green/Blue) as Signal Readout.
ACS Sustain Chem Eng 2019, 7 (20).
https://doi.org/10.1021/acssuschemeng.9b04740. | |
dc.relation | Pan, Y.; Liu, X.; Qian, L.; Cui, Y.; Zheng, X.; Kang, Y.; Fu, X.; Wang, S.; Wang, P.; Wang,
D. A Hand-Held Optoelectronic Tongue for the Identification of Heavy-Metal Ions. Sens
Actuators B Chem 2022, 352. https://doi.org/10.1016/j.snb.2021.130971. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes | |
dc.type | Trabajo de grado - Pregrado | |