dc.contributorJiménez Estévez, Guillermo Andrés
dc.contributorBressan, Michael
dc.contributorPalma Behnke, Rodrigo
dc.creatorPulido Pérez, Jorge Arturo
dc.date.accessioned2023-02-01T16:22:00Z
dc.date.accessioned2023-09-06T23:55:02Z
dc.date.available2023-02-01T16:22:00Z
dc.date.available2023-09-06T23:55:02Z
dc.date.created2023-02-01T16:22:00Z
dc.date.issued2023-01-31
dc.identifierhttp://hdl.handle.net/1992/64452
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726957
dc.description.abstractLos sistemas de distribución con alta penetración de generación distribuida han representado varios desafíos respecto a la evaluación de impactos operativos que estos pueden traer a la red. Estos impactos pueden variar entre beneficios y efectos no deseados dependiendo de la planeación de la ubicación y la capacidad asociada a la agregación de la generación distribuida. En este trabajo se abordan dichos desafíos al identificar hasta qué punto la integración de sistemas solares fotovoltaicos no conlleva a problemas operativos, así como las condiciones en las que dicha integración pueda ofrecer potenciales beneficios, en el marco de los denominados servicios de flexibilidad. Se propone un análisis de capacidad de alojamiento complementado con indicadores relacionados a potenciales servicios de flexibilidad con el fin de determinar un índice de flexibilidad. Todo lo anterior, aporta a establecer una estrategia de agregación de generación distribuida cuya utilidad resulta de interés para el operador de red y para agregadores de recursos distribuidos ante un eventual mercado local de flexibilidad o de planeación de integración de generación distribuida.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Eléctrica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.relationL. F. Ochoa, C. J. Dent, and G. P. Harrison, "Distribution Network Capacity Assessment : Variable DG and Active Networks," IEEE Trans. Power Syst., vol. 25, no. 1, pp. 87-95, 2010.
dc.relationS. Fan, T. Pu, L. Li, T. Yu, Z. Yang, and B. Gao, "Evaluation of impact of integrated distributed generation on distribution network based on time-series analysis," China Int. Conf. Electr. Distrib. CICED, vol. 2016-Septe, no. Ciced, pp. 10-13, 2016, doi: 10.1109/CICED.2016.7576171
dc.relationO. Lennerhag, G. Pinares, M. H. J. Bollen, G. Foskolos, and T. Gafurov, "Performance indicators for quantifying the ability of the grid to host renewable electricity production," CIRED - Open Access Proc. J., vol. 2017, no. 1, pp. 792-795, 2017, doi: 10.1049/oap-cired.2017.0178.
dc.relationV. Ramachandran and W. Virginia, "Modeling of Utility Distribution Feeder in OpenDSS with Steady State Impact Analysis of Distributed Generation Modeling of Utility Distribution Feeder in OpenDSS with Steady State Impact Analysis of Distributed Generation Lane Department of Computer Scien," West Virginia University, 2011
dc.relationP. T. Baboli, "Investigating the impacts of distributed energy resource expansion on flexible and overall reliability indices of hybrid AC-DC microgrid," 19th Power Syst. Comput. Conf. PSCC 2016, 2016, doi: 10.1109/PSCC.2016.7540863.
dc.relationP. P. Barker and R. W. De Mello, "Determining the impact of distributed generation on power systems: Part 1 - Radial Distribution Systems," in IEEE Power Engineering Society Summer Meeting, 2000, vol. 00, no. c, pp. 1645-1656.
dc.relationA. T. Davda and B. R. Parekh, "System Impact Analysis of Renewable Distributed Generation on an Existing Radial Distribution Network," in IEEE Power and Energy Conference, 2012, pp. 128-132.
dc.relationA. V Shalukho, I. A. Lipuzhin, and A. A. Voroshilov, "Power Quality in Microgrids with Distributed Generation," in 2019 International Ural Conference on Electrical Power Engineering (UralCon), 2019, pp. 54-58, doi: 10.1109/URALCON.2019.8877619.
dc.relationP. Chiradeja, "Benefit of Distributed Generation: A Line Loss Reduction Analysis," in IEEE Power and Energy Transmission and Distribution Conference, 2005, pp. 1-5.
dc.relationM. F. Alhajri and S. Member, "Improving the voltage profiles of Distribution Networks using multiple Distribution Generation Sources," in Conference on Power Engineering Large Engineering Systems, pp. 295-299.
dc.relationR. L. G. De, R. F. Calili, and D. R. Louzada, "Photovoltaic Distributed Generation Use to Reduce Technical Losses in Areas with Overloaded Feeders," in IEEE Conference on Photovoltaic Specialists, 2020, pp. 2270-2273.
dc.relationM. Z. Ul Abideen, O. Ellabban, and L. Al-Fagih, "A review of the tools and methods for distribution networks' hosting capacity calculation," Energies, vol. 13, no. 11, pp. 1-25, 2020, doi: 10.3390/en13112758
dc.relationB. Olek, I. Member, M. Wierzbowski, and I. Member, "Local Energy Balancing and Ancillary Services in Low Voltage Networks with Distributed Generation , Energy Storage and Active Loads," IEEE Trans. Ind. Electron., vol. 0046, no. c, 2014, doi: 10.1109/TIE.2014.2377134
dc.relationF. Alsokhiry, G. P. Adam, and K. L. Lo, "Contribution of Distributed Generation to Ancillary Services," 2012
dc.relationH. A. Gil and G. Joos, "On the Quantification of the Network Capacity Deferral Value of Distributed Generation," IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1592-1599, 2006.
dc.relationUniversidad Tecnológica de Pereira; Centro de Energía Facultad de Ciencias Físicas y Matemáticas Universidad de Chile, "Estudio para el Diseño de Indicadores de Seguimiento y Evaluación de la Integración de la Autogeneración y la Generación Distribuida en el Sistema Interconectado Nacional," 2019
dc.relationL. F. Ochoa, A. Padilha-Feltrin, and G. P. Harrison, "Evaluating distributed generation impacts with a multiobjective index," IEEE Trans. Power Deliv., vol. 21, no. 3, pp. 1452-1458, 2006, doi: 10.1109/TPWRD.2005.860262
dc.relationNorth American Electric Reliability Corporation, "Accommodating High Levels of Variable Generation," 2009
dc.relationG. Celli, F. Pilo, G. Pisano, S. Ruggeri, and G. G. Soma, "Synthetic representation of flexibility from aggregated LV Distributed Energy Resources," in CIRED 2021 Conference, 2021, no. September, pp. 20-23
dc.relationR. Fonteijn, M. Van Amstel, P. Nguyen, J. Morren, G. M. Bonnema, and H. Slootweg, "Evaluating flexibility values for congestion management in distribution networks within Dutch pilots," in International Conference on Renewable Power Generation, 2019, vol. 2019, no. Rpg 2018, pp. 5158-5162, doi: 10.1049/joe.2018.9314
dc.relationP. Chicco, G; Riaz, S; Mazza,A; Mancarella, "Flexibility From Distributed Multienergy Systems," IEEE Proc., vol. 108, no. 9, 2020
dc.relationA. Singh et al., "Development of a flexibility service mechanism for the determination and exploitation of flexibility in active distribution network through parallelized optimal power flow calculations," in CIRED 2021 Conference, 2021, no. September, pp. 1-5.
dc.relationF. Chen and C. Xie, Ning ; Huang, Chunyi; Lei Wang; Zhu, Chao; Wang, "Flexibility Evaluation of Distribution Network with High Penetration of Variable Generations," in IEEE Conference on Energy Internet and Energy System Integration, 2017, no. December 2020, doi: 10.1109/EI2.2017.8245479
dc.relationN. Savvopoulos and N. Hatziargyriou, "Estimating Operational Flexibility from Active Distribution Grids," in International Conference on the European Energy Market (EEM), 2020, pp. 0-5
dc.relationI. Bouloumpasis, D. Steen, and L. A. Tuan, "Congestion Management using Local Flexibility Markets : Recent Development and Challenges," 2019 IEEE PES Innov. Smart Grid Technol. Eur., no. 773717, pp. 1-5, 2020, doi: 10.1109/ISGTEurope.2019.8905489
dc.relationA. Aithal, R. Burns, C. Bradley, N. I. E. Networks, and N. I. Uk, "Technology Assessment for Flexibility Services in Distribution Systems": NIE Networks Case Study, in CIRED 2021 Conference, 2021, no. September, pp. 1-5
dc.relationL. F. Ochoa and G. P. Harrison, "Minimising Energy Losses : Optimal Accommodation and Smart Operation of Renewable Distributed Generation," IEEE Trans. Power Syst., vol. 26, no. 1, pp. 198-205, 2011
dc.relationEnergy Networks Association, "Open Networks Project Active Power Services Implementation Plan," in IEEE PES Innovative Smart Grid Technologies Conference Europe, 2020, no. December, pp. 1-15
dc.relationB. B. Navarro, "A Comprehensive Solar PV Hosting Capacity in MV and LV Radial Distribution Networks," no. September, 2017, doi: 10.1109/ISGTEurope.2017.8260210
dc.relationUnidad de Planeación Minero Energética de Colombia, "PROYECCIÓN DE LA DEMANDA DE ENERGÍA ELÉCTRICA Y POTENCIA MÁXIMA EN COLOMBIA," 2016. [Online]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_Energia_Electrica_Junio_2016.pdf
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEvaluación de impactos ante la agregación de generación distribuida en una red de distribución, desde la perspectiva de los servicios de flexibilidad
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución