dc.contributorTabares Pozos, Alejandra
dc.contributorSanabria Cortés, Pablo José
dc.contributorPérez Bernal, Juan Fernando
dc.contributorFranco Baquero, John Fredy
dc.creatorPérez Vega, Julián Andrés
dc.date.accessioned2023-05-31T16:06:43Z
dc.date.accessioned2023-09-06T23:54:20Z
dc.date.available2023-05-31T16:06:43Z
dc.date.available2023-09-06T23:54:20Z
dc.date.created2023-05-31T16:06:43Z
dc.date.issued2023-05-25
dc.identifierhttp://hdl.handle.net/1992/67009
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726945
dc.description.abstractRenewable energy sources have gained popularity over the years due to their numerous benefits, including a positive environmental and economic impact. However, stakeholders involved in electric microgrids face complex decisions when managing energy generation and consumption, particularly given the uncertainty of weather conditions. This study aims to optimize decision-making processes in energy management systems for microgrids connected to a main grid while accounting for stochasticity and dynamism in energy generation and consumption by microgrid agents. The study incorporates stochastic energy prices for purchases and sales to the main grid to model real-world uncertainties accurately. This approach enables the representation of the unpredictable nature of energy markets, which can significantly affect the performance of microgrids. The study employs the Stochastic Dual Dynamic Programming (SDDP) algorithm on a multi-stage adaptation of the microgrid model to evaluate its effectiveness compared to a deterministic equivalent model. The SDDP reduces by 11.25%, 9.45%, and 4.93% the total cost when using an instance with 32, 100, and 150 prosumers, respectively, over a 24 hours planning horizon. Overall, the results of this study have significant implications for energy management systems in microgrids, particularly in ensuring optimal performance and reducing costs. The findings can also help to take policy decisions related to renewable energy and microgrid development, particularly considering growing concerns around climate change and the need to transition towards a more sustainable energy system.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Industrial
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Industrial
dc.relationS. F. Zandrazavi, C. P. Guzman, A. T. Pozos, J. Quiros-Tortos, and J. F. Franco, "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, vol. 241, Feb. 2022, doi: 10.1016/j.energy.2021.122884.
dc.relationG. Shahgholian, "A brief review on microgrids: Operation, applications, modeling, and control," International Transactions on Electrical Energy Systems, vol. 31, no. 6. John Wiley and Sons Ltd, Jun. 01, 2021. doi: 10.1002/2050-7038.12885
dc.relationA. Cagnano, E. De Tuglie, and P. Mancarella, "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, vol. 258. Elsevier Ltd, Jan. 15, 2020. doi: 10.1016/j.apenergy.2019.114039.
dc.relationD. T. Ton and M. A. Smith, "The U.S. Department of Energy's Microgrid Initiative," Electricity Journal, vol. 25, no. 8, pp. 84-94, Oct. 2012, doi: 10.1016/j.tej.2012.09.013.
dc.relationW. Su and J. Wang, "Energy Management Systems in Microgrid Operations," Electricity Journal, vol. 25, no. 8, pp. 45-60, Oct. 2012, doi: 10.1016/j.tej.2012.09.010.
dc.relationM. Li, X. Zhang, G. Li, and C. Jiang, "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Appl Energy, vol. 176, pp. 138-148, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.070.
dc.relationS. Singh, M. Singh, and S. C. Kaushik, "Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system," Energy Convers Manag, vol. 128, pp. 178-190, Nov. 2016, doi: 10.1016/j.enconman.2016.09.046.
dc.relationM. M. Kamal, I. Ashraf, and E. Fernandez, "Planning and optimization of microgrid for rural electrification with integration of renewable energy resources," J Energy Storage, vol. 52, Aug. 2022, doi: 10.1016/j.est.2022.104782.
dc.relationY. Huangfu, C. Tian, S. Zhuo. L. Xu, P. Li, S. Quan, Y. Zhang, R. Ma, "An optimal energy management strategy with subsection bi-objective optimization dynamic programming for photovoltaic/battery/hydrogen hybrid energy system," Int J Hydrogen Energy, vol. 48, no. 8, pp. 3154-3170, Jan. 2023, doi: 10.1016/j.ijhydene.2022.10.133.
dc.relationZ. Asghar, K. Hafeez, D. Sabir, B. Ijaz, S. S. H. Bukhari, and J. S. Ro, "RECLAIM: Renewable Energy Based Demand-Side Management Using Machine Learning Models," IEEE Access, vol. 11, pp. 3846-3857, 2023, doi: 10.1109/ACCESS.2023.3235209.
dc.relationA. Hafeez, R. Alammari, and A. Iqbal, "Utilization of EV Charging Station in Demand Side Management Using Deep Learning Method," IEEE Access, vol. 11, pp. 8747-8760, 2023, doi: 10.1109/ACCESS.2023.3238667.
dc.relationA. B. Kordabad, R. Wisniewski, and S. Gros, "Safe Reinforcement Learning Using Wasserstein Distributionally Robust MPC and Chance Constraint," IEEE Access, vol. 10, pp. 130058-130067, 2022, doi: 10.1109/ACCESS.2022.3228922.
dc.relationN. Salehi, H. Martinez-Garcia, G. Velasco-Quesada, and J. M. Guerrero, "A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids," IEEE Access, vol. 10, pp. 15935-15955, 2022, doi: 10.1109/ACCESS.2022.3142810.
dc.relationM. Talaat, M. H. Elkholy, A. Alblawi, and T. Said, "Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources," Artif Intell Rev, 2023, doi: 10.1007/s10462-023-10410-w.
dc.relationIEEE Power Electronics Society., 2007 IEEE Lausanne Power Tech : proceedings, 1-5 July 2007, Lausanne, Switzerland. IEEE, 2007. doi: 10.1109/PCT.2007.4538359.
dc.relationM. V. F. Pereira and L. M. V. G. Pinto, "Multi-stage stochastic optimization applied to energy planning," 1991. doi: https://doi.org/10.1007/BF01582895.
dc.relationR. Faia, J. Soares, Z. Vale, and J. M. Corchado, "An optimization model for energy community costs minimization considering a local electricity market between prosumers and electric vehicles," Electronics (Switzerland), vol. 10, no. 2, pp. 1-17, Jan. 2021, doi: 10.3390/electronics10020129.
dc.relationR. Faia, J. Soares, T. Pinto, F. Lezama, Z. Vale, and J. M. Corchado, "Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions," IEEE Access, vol. 9, pp. 12420-12430, 2021, doi: 10.1109/ACCESS.2021.3051004.
dc.relationN. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, "Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3569-3583, Sep. 2017, doi: 10.1109/TPWRS.2017.2649558.
dc.relationD. Wang, B. Liu, H. Jia, Z. Zhang, J. Chen, and D. Huang, "Peer-to-peer Electricity Transaction Decisions of the User-side Smart Energy System Based on the SARSA Reinforcement Learning," CSEE Journal of Power and Energy Systems, vol. 8, no. 3, pp. 826-837, May 2022, doi: 10.17775/CSEEJPES.2020.03290.
dc.relationP. Zeng, H. Li, H. He, and S. Li, "Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning," IEEE Trans Smart Grid, vol. 10, no. 4, pp. 4435-4445, Jul. 2019, doi: 10.1109/TSG.2018.2859821.
dc.relationJ. F. Benders, "Partitioning procedures for solving mixed-variables programming problems*," 1962.
dc.relationC. Fullner and S. Rebennack, "Stochastic dual dynamic programming and its variants." Accessed: Feb. 26, 2023. [Online]. Available: http://www.optimization-online.org/DB_FILE/2021/01/8217.pdf
dc.relationJ. Roger-B. Wets, "Stochastic programs with fixed recourse: the equivalent deterministic program *," 1974. [Online]. Available: http://www.siam.org/journals/ojsa.php, doi: https://doi.org/10.1137/1016053.
dc.relationW. B. Powell, Approximate dynamic programming : solving the curses of dimensionality. Wiley, 2011. ISBN: 978-0-470-60445-8.
dc.relationK. Huang and S. Ahmed, "On a multi-stage stochastic programming model for inventory planning," INFOR, vol. 46, no. 3, pp. 155-163, Aug. 2008, doi: 10.3138/infor.46.3.155.
dc.relationL. Ding, S. Ahmed, and A. Shapiro, "A Python package for multi-stage stochastic programming." Accessed: Feb. 26, 2023. [Online]. Available: https://https://optimization-online.org/wp-content/uploads/2019/05/7199.pdf
dc.relationJ. Pérez, "SDEMP instances," May 13, 2023. https://github.com/japerez1994/SDEMPinstances (accessed May 15, 2023).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleA multi-stage approach for energy management in microgrids
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución