dc.contributorJiménez Díaz, Elizabeth
dc.contributorGrupo de investigación en Bioquímica Aplicada
dc.creatorCastellanos Aldana, Camila
dc.date.accessioned2023-07-28T15:08:26Z
dc.date.accessioned2023-09-06T23:53:45Z
dc.date.available2023-07-28T15:08:26Z
dc.date.available2023-09-06T23:53:45Z
dc.date.created2023-07-28T15:08:26Z
dc.date.issued2023-07-24
dc.identifierhttp://hdl.handle.net/1992/68852
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726938
dc.description.abstractEl cáncer colorrectal es una enfermedad de alta incidencia y una de las principales causas de muerte por cáncer en todo el mundo. La doxorrubicina, un fármaco comúnmente utilizado en quimioterapia, tiene efectos secundarios graves a altas dosis, lo que ha impulsado la búsqueda de terapias combinadas para mejorar su eficacia. Estudios previos han demostrado que la combinación de doxorrubicina con el fármaco hipertensivo Losartán muestra sinergia en el tratamiento. Este estudio se centró en caracterizar molecular y fenotípicamente esta terapia combinada en células de cáncer colorrectal, revelando que la combinación aumenta el arresto celular en la fase S, disminuye la proliferación y la formación de tumores debido al daño en el ADN irreparable, y mejora los efectos secundarios de la doxorrubicina. Además, la terapia combinatoria reduce la movilidad celular mediante la disminución de la expresión de TGF-B1, asociada a la metástasis y la invasión del cáncer. Se sugiere futuros estudios para analizar la expresión de proteínas de la vía PI3K/AKT y TGF-B1 para comprender mejor los mecanismos afectados por la terapia combinada.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherQuímica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationMarley, A. R.; Nan, H. Epidemiology of Colorectal Cancer. Int J Mol Epidemiol Genet 2016, 7 (3), 105-114.
dc.relationMármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. IJMS 2017, 18 (1), 197. https://doi.org/10.3390/ijms18010197.
dc.relationSiegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer Statistics, 2022. CA A Cancer J Clinicians 2022, 72 (1), 7-33. https://doi.org/10.3322/caac.21708.
dc.relationPolacheck, W. J.; Zervantonakis, I. K.; Kamm, R. D. Tumor Cell Migration in Complex Microenvironments. Cell. Mol. Life Sci. 2013, 70 (8), 1335-1356. https://doi.org/10.1007/s00018-012-1115-1.
dc.relationPijuan, J.; Barceló, C.; Moreno, D. F.; Maiques, O.; Sisó, P.; Marti, R. M.; Macià, A.; Panosa, A. In Vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. Front. Cell Dev. Biol. 2019, 7, 107. https://doi.org/10.3389/fcell.2019.00107.
dc.relationJustus, C. R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L. V. In Vitro Cell Migration and Invasion Assays. JoVE 2014, No. 88, 51046. https://doi.org/10.3791/51046.
dc.relationYang, N.; Ray, S. D.; Krafts, K. Cell Proliferation. In Encyclopedia of Toxicology; Elsevier, 2014; pp 761-765. https://doi.org/10.1016/B978-0-12-386454-3.00274-8.
dc.relationPeng, Y.; Li, J.; Zhu, L. Cancer and Non-Coding RNAs. In Nutritional Epigenomics; Elsevier, 2019; pp 119-132. https://doi.org/10.1016/B978-0-12-816843-1.00008-4.
dc.relationCell-Cycle Checkpoints and Aneuploidy on the Path to Cancer. IV 2018, 32 (1). https://doi.org/10.21873/invivo.11197.
dc.relationMatthews, H. K.; Bertoli, C.; de Bruin, R. A. M. Cell Cycle Control in Cancer. Nat Rev Mol Cell Biol 2022, 23 (1), 74-88. https://doi.org/10.1038/s41580-021-00404-3.
dc.relationPrager, B. C.; Xie, Q.; Bao, S.; Rich, J. N. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell 2019, 24 (1), 41-53. https://doi.org/10.1016/j.stem.2018.12.009.
dc.relationBuczacki, S. Cancer Stem Cells. In Encyclopedia of Cell Biology; Elsevier, 2016; pp 807-812. https://doi.org/10.1016/B978-0-12-394447-4.30119-5.
dc.relationPartridge, A. H.; Burstein, H. J.; Winer, E. P. Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. JNCI Monographs 2001, 2001 (30), 135-142. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003451.
dc.relationBayat Mokhtari, R.; Homayouni, T. S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8 (23), 38022-38043. https://doi.org/10.18632/oncotarget.16723.
dc.relationTakebe, N.; Miele, L.; Harris, P. J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S. X.; Ivy, S. P. Targeting Notch, Hedgehog, and Wnt Pathways in Cancer Stem Cells: Clinical Update. Nat Rev Clin Oncol 2015, 12 (8), 445-464. https://doi.org/10.1038/nrclinonc.2015.61.
dc.relationSliwinska, M. A.; Mosieniak, G.; Wolanin, K.; Babik, A.; Piwocka, K.; Magalska, A.; Szczepanowska, J.; Fronk, J.; Sikora, E. Induction of Senescence with Doxorubicin Leads to Increased Genomic Instability of HCT116 Cells. Mechanisms of Ageing and Development 2009, 130 (1-2), 24-32. https://doi.org/10.1016/j.mad.2008.04.011.
dc.relationJohnson-Arbor, K.; Dubey, R. Doxorubicin. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2022.
dc.relationYang, F.; Teves, S. S.; Kemp, C. J.; Henikoff, S. Doxorubicin, DNA Torsion, and Chromatin Dynamics. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014, 1845 (1), 84-89. https://doi.org/10.1016/j.bbcan.2013.12.002.
dc.relationMeredith, A.-M.; Dass, C. R. Increasing Role of the Cancer Chemotherapeutic Doxorubicin in Cellular Metabolism. Journal of Pharmacy and Pharmacology 2016, 68 (6), 729-741. https://doi.org/10.1111/jphp.12539.
dc.relationZhao, Y.; Cao, J.; Melamed, A.; Worley, M.; Gockley, A.; Jones, D.; Nia, H. T.; Zhang, Y.; Stylianopoulos, T.; Kumar, A. S.; Mpekris, F.; Datta, M.; Sun, Y.; Wu, L.; Gao, X.; Yeku, O.; del Carmen, M. G.; Spriggs, D. R.; Jain, R. K.; Xu, L. Losartan Treatment Enhances Chemotherapy Efficacy and Reduces Ascites in Ovarian Cancer Models by Normalizing the Tumor Stroma. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (6), 2210-2219. https://doi.org/10.1073/pnas.1818357116.
dc.relationMainetti, L. E.; Rico, M. J.; Kaufman, C. D.; Grillo, M. C.; Guercetti, J.; Baglioni, M. V.; Del Giúdice, A.; Capitani, M. C.; Fusini, M.; Rozados, V. R.; Scharovsky, O. G. Losartan Improves the Therapeutic Effect of Metronomic Cyclophosphamide in Triple Negative Mammary Cancer Models. Oncotarget 2020, 11 (32), 3048-3060. https://doi.org/10.18632/oncotarget.27694.
dc.relationAsgharzadeh, F.; Mostafapour, A.; Ebrahimi, S.; Amerizadeh, F.; Sabbaghzadeh, R.; Hassanian, S. M.; Fakhraei, M.; Farshbaf, A.; Ferns, G. A.; Giovannetti, E.; Avan, A.; Khazaei, M. Inhibition of Angiotensin Pathway via Valsartan Reduces Tumor Growth in Models of Colorectal Cancer. Toxicology and Applied Pharmacology 2022, 440, 115951. https://doi.org/10.1016/j.taap.2022.115951.
dc.relationHashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G. A.; Ryzhikov, M.; Jafari, M.; Khazaei, M.; Hassanian, S. M. Angiotensin Receptor Blocker Losartan Inhibits Tumor Growth of Colorectal Cancer. EXCLI Journal; 20:Doc506; ISSN 1611-2156 2021. https://doi.org/10.17179/EXCLI2020-3083.
dc.relationKhoshghamat, N.; Jafari, N.; Toloue-pouya, V.; Azami, S.; Mirnourbakhsh, S. H.; Khazaei, M.; Ferns, G. A.; Rajabian, M.; Avan, A. The Therapeutic Potential of Renin-Angiotensin System Inhibitors in the Treatment of Pancreatic Cancer. Life Sciences 2021, 270, 119118. https://doi.org/10.1016/j.lfs.2021.119118.
dc.relationMelo Torres, C. P. Rational Approach to Evaluate Interaction Effect on Combination Therapy for Cancer Treatment with Doxorubicin and Non- Traditional Chemotherapeutic Drugs (Metformin, Losartan, Taurine and Salicylic Acid ), Universidad de los andes, 2021.
dc.relationTallarida, R. J. Quantitative Methods for Assessing Drug Synergism. Genes Cancer 2011, 2 (11), 1003-1008. https://doi.org/10.1177/1947601912440575.
dc.relationHashemzehi, M.; Naghibzadeh, N.; Asgharzadeh, F.; Mostafapour, A.; Hassanian, S. M.; Ferns, G. A.; Cho, W. C.; Avan, A.; Khazaei, M. The Therapeutic Potential of Losartan in Lung Metastasis of Colorectal Cancer. EXCLI Journal; 19:Doc927; ISSN 1611-2156 2020. https://doi.org/10.17179/EXCLI2020-2093.
dc.relationGodugu, C.; Patel, A. R.; Doddapaneni, R.; Marepally, S.; Jackson, T.; Singh, M. Inhalation Delivery of Telmisartan Enhances Intratumoral Distribution of Nanoparticles in Lung Cancer Models. Journal of Controlled Release 2013, 172 (1), 86-95. https://doi.org/10.1016/j.jconrel.2013.06.036.
dc.relationSmith, G. R.; Missailidis, S. Cancer, Inflammation and the AT1 and AT2 Receptors. Journal of Inflammation 2004, 1 (1), 3. https://doi.org/10.1186/1476-9255-1-3.
dc.relationArrieta, O.; Pineda-Olvera, B.; Guevara-Salazar, P.; Hernández-Pedro, N.; Morales-Espinosa, D.; Cerón-Lizarraga, T. L.; González-De la Rosa, C. H.; Rembao, D.; Segura-Pacheco, B.; Sotelo, J. Expression of AT1 and AT2 Angiotensin Receptors in Astrocytomas Is Associated with Poor Prognosis. Br J Cancer 2008, 99 (1), 160-166. https://doi.org/10.1038/sj.bjc.6604431.
dc.relationGeorge, A. J.; Thomas, W. G.; Hannan, R. D. The Renin Angiotensin System and Cancer: Old Dog, New Tricks. Nat Rev Cancer 2010, 10 (11), 745-759. https://doi.org/10.1038/nrc2945.
dc.relationKhurana, L.; ElGindi, M.; Tilstam, P. V.; Pantouris, G. Elucidating the Role of an Immunomodulatory Protein in Cancer: From Protein Expression to Functional Characterization. In Methods in Enzymology; Elsevier, 2019; Vol. 629, pp 307-360. https://doi.org/10.1016/bs.mie.2019.05.053.
dc.relationSchwartz, G. K.; Shah, M. A. Targeting the Cell Cycle: A New Approach to Cancer Therapy. JCO 2005, 23 (36), 9408-9421. https://doi.org/10.1200/JCO.2005.01.5594.
dc.relationMolinari, M. Cell Cycle Checkpoints and Their Inactivation in Human Cancer. Cell Proliferation 2000, 33 (5), 261-274. https://doi.org/10.1046/j.1365-2184.2000.00191.x.
dc.relationBarbash, O.; Alan Diehl, J. Regulation of the Cell Cycle. In The Molecular Basis of Cancer; Elsevier, 2008; pp 177-188. https://doi.org/10.1016/B978-141603703-3.10013-5.
dc.relationLi, Y.; Barbash, O.; Diehl, J. A. Regulation of the Cell Cycle. In The Molecular Basis of Cancer; Elsevier, 2015; pp 165-178.e2. https://doi.org/10.1016/B978-1-4557-4066-6.00011-1.
dc.relationCruet-Hennequart, S.; Prendergast, Á. M.; Shaw, G.; Barry, F. P.; Carty, M. P. Doxorubicin Induces the DNA Damage Response in Cultured Human Mesenchymal Stem Cells. Int J Hematol 2012, 96 (5), 649-656. https://doi.org/10.1007/s12185-012-1196-5.
dc.relationVentura, E.; Giordano, A. Cell Cycle. In Reference Module in Life Sciences; Elsevier, 2019; p B9780128096338900000. https://doi.org/10.1016/B978-0-12-809633-8.90189-4.
dc.relationLupi, M.; Matera, G.; Natoli, C.; Colombo, V.; Ubezio, P. The Contribution of P53 in the Dynamics of Cell Cycle Response to DNA Damage Interpreted by a Mathematical Model. Cell Cycle 2007, 6 (8), 943-950. https://doi.org/10.4161/cc.6.8.4103.
dc.relationDavis, W. J.; Lehmann, P. Z.; Li, W. Nuclear PI3K Signaling in Cell Growth and Tumorigenesis. Front. Cell Dev. Biol. 2015, 3. https://doi.org/10.3389/fcell.2015.00024.
dc.relationWolf, G.; Wenzel, U. O. Angiotensin II and Cell Cycle Regulation. Hypertension 2004, 43 (4), 693-698. https://doi.org/10.1161/01.HYP.0000120963.09029.ca.
dc.relationWu, Y.; Ma, J.; Sun, Y.; Tang, M.; Kong, L. Effect and Mechanism of PI3K/AKT/MTOR Signaling Pathway in the Apoptosis of GC-1 Cells Induced by Nickel Nanoparticles. Chemosphere 2020, 255, 126913. https://doi.org/10.1016/j.chemosphere.2020.126913.
dc.relationYe, X.; Franco, A. A.; Santos, H.; Nelson, D. M.; Kaufman, P. D.; Adams, P. D. Defective S Phase Chromatin Assembly Causes DNA Damage, Activation of the S Phase Checkpoint, and S Phase Arrest. Molecular Cell 2003, 11 (2), 341-351. https://doi.org/10.1016/S1097-2765(03)00037-6.
dc.relationKitada, K.; Pu, F.; Toi, M. Occurrence of Senescence-Escaping Cells in Doxorubicin-Induced Senescence Is Enhanced by PD0332991, a Cyclin-Dependent Kinase 4/6 Inhibitor, in Colon Cancer HCT116 Cells. Oncol Lett 2018. https://doi.org/10.3892/ol.2018.9657.
dc.relationMunshi, A.; Hobbs, M.; Meyn, R. E. Clonogenic Cell Survival Assay. In Chemosensitivity; Humana Press: New Jersey, 2005; Vol. 110, pp 021-028. https://doi.org/10.1385/1-59259-869-2:021.
dc.relationPolyak, K.; Hahn, W. C. Roots and Stems: Stem Cells in Cancer. Nat Med 2006, 12 (3), 296-300. https://doi.org/10.1038/nm1379.
dc.relationRajendran, V.; Jain, M. V. In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. In Cancer Stem Cells; Papaccio, G., Desiderio, V., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2018; Vol. 1692, pp 89-95. https://doi.org/10.1007/978-1-4939-7401-6_8.
dc.relationHu, D.; Meng, R.; Nguyen, T.; Chai, O.; Park, B.; Lee, J.-S.; Kim, S. Inhibition of Colorectal Cancer Tumorigenesis by Ursolic Acid and Doxorubicin Is Mediated by Targeting the Akt Signaling Pathway and Activating the Hippo Signaling Pathway. Mol Med Rep 2022, 27 (1), 11. https://doi.org/10.3892/mmr.2022.12898.
dc.relationKilmister, E. J.; Tan, S. T. The Role of the Renin Angiotensin System in the Cancer Stem Cell Niche. J Histochem Cytochem. 2021, 69 (12), 835-847. https://doi.org/10.1369/00221554211026295.
dc.relationLovitt, C. J.; Shelper, T. B.; Avery, V. M. Doxorubicin Resistance in Breast Cancer Cells Is Mediated by Extracellular Matrix Proteins. BMC Cancer 2018, 18 (1), 41. https://doi.org/10.1186/s12885-017-3953-6.
dc.relationKarami fath, M.; Ebrahimi, M.; Nourbakhsh, E.; Zia Hazara, A.; Mirzaei, A.; Shafieyari, S.; Salehi, A.; Hoseinzadeh, M.; Payandeh, Z.; Barati, G. PI3K/Akt/MTOR Signaling Pathway in Cancer Stem Cells. Pathology - Research and Practice 2022, 237, 154010. https://doi.org/10.1016/j.prp.2022.154010.
dc.relationTawinwung, S.; Ninsontia, C.; Chanvorachote, P. Angiotensin II Increases Cancer Stem Cell-like Phenotype in Lung Cancer Cells. Anticancer Res 2015, 35 (9), 4789-4797.
dc.relationWang, X.; Decker, C. C.; Zechner, L.; Krstin, S.; Wink, M. In Vitro Wound Healing of Tumor Cells: Inhibition of Cell Migration by Selected Cytotoxic Alkaloids. BMC Pharmacol Toxicol 2019, 20 (1), 4. https://doi.org/10.1186/s40360-018-0284-4.
dc.relationOviedo, N. J.; Beane, W. S. Regeneration: The Origin of Cancer or a Possible Cure? Seminars in Cell & Developmental Biology 2009, 20 (5), 557-564. https://doi.org/10.1016/j.semcdb.2009.04.005.
dc.relationRiahi, R.; Yang, Y.; Zhang, D. D.; Wong, P. K. Advances in Wound-Healing Assays for Probing Collective Cell Migration. SLAS Technology 2012, 17 (1), 59-65. https://doi.org/10.1177/2211068211426550.
dc.relationLambrou, G. I.; Remboutsika, E. Proliferation versus Regeneration: The Good, the Bad and the Ugly. Front. Physiol. 2014, 5. https://doi.org/10.3389/fphys.2014.00010.
dc.relationMahvi, D. A.; Liu, R.; Grinstaff, M. W.; Colson, Y. L.; Raut, C. P. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies: XXXX. CA: A Cancer Journal for Clinicians 2018, 68 (6), 488-505. https://doi.org/10.3322/caac.21498.
dc.relationItatani, Y.; Kawada, K.; Sakai, Y. Transforming Growth Factor-B Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. IJMS 2019, 20 (23), 5822. https://doi.org/10.3390/ijms20235822.
dc.relationDerynck, R.; Turley, S. J.; Akhurst, R. J. TGFB Biology in Cancer Progression and Immunotherapy. Nat Rev Clin Oncol 2021, 18 (1), 9-34. https://doi.org/10.1038/s41571-020-0403-1.
dc.relationChandra Jena, B.; Sarkar, S.; Rout, L.; Mandal, M. The Transformation of Cancer-Associated Fibroblasts: Current Perspectives on the Role of TGF-B in CAF Mediated Tumor Progression and Therapeutic Resistance. Cancer Letters 2021, 520, 222-232. https://doi.org/10.1016/j.canlet.2021.08.002.
dc.relationVillalba, M.; Evans, S. R.; Vidal-Vanaclocha, F.; Calvo, A. Role of TGF-B in Metastatic Colon Cancer: It Is Finally Time for Targeted Therapy. Cell Tissue Res 2017, 370 (1), 29-39. https://doi.org/10.1007/s00441-017-2633-9.
dc.relationBandyopadhyay, A.; Wang, L.; Agyin, J.; Tang, Y.; Lin, S.; Yeh, I.-T.; De, K.; Sun, L.-Z. Doxorubicin in Combination with a Small TGF Inhibitor: A Potential Novel Therapy for Metastatic Breast Cancer in Mouse Models. PLoS ONE 2010, 5 (4), e10365. https://doi.org/10.1371/journal.pone.0010365.
dc.relationLi, J.; Liu, H.; Yu, J.; Yu, H. Chemoresistance to Doxorubicin Induces Epithelial-Mesenchymal Transition via Upregulation of Transforming Growth Factor B Signaling in HCT116 Colon Cancer Cells. Molecular Medicine Reports 2015, 12 (1), 192-198. https://doi.org/10.3892/mmr.2015.3356.
dc.relationHocevar, B. A.; Howe, P. H. Mechanisms of TGF-B-Induced Cell Cycle Arrest. Mineral Electrolyte Metab 1998, 24 (2-3), 131-135. https://doi.org/10.1159/000057360.
dc.relationChauhan, V. P.; Martin, J. D.; Liu, H.; Lacorre, D. A.; Jain, S. R.; Kozin, S. V.; Stylianopoulos, T.; Mousa, A. S.; Han, X.; Adstamongkonkul, P.; Popovic, Z.; Huang, P.; Bawendi, M. G.; Boucher, Y.; Jain, R. K. Angiotensin Inhibition Enhances Drug Delivery and Potentiates Chemotherapy by Decompressing Tumour Blood Vessels. Nat Commun 2013, 4 (1), 2516. https://doi.org/10.1038/ncomms3516.
dc.relationBishop, N.; Kalajzic, I.; Arshad, F.; Lefley, D.; Gossiel, F.; Ottewell, P. Losartan Reduces Circulating TGFb and CTX and Increases Vertebral Bone Mass in the OIM Mouse. BA 2019. https://doi.org/10.1530/boneabs.7.P133.
dc.relationPallasch, F. B.; Schumacher, U. Angiotensin Inhibition, TGF-B and EMT in Cancer. Cancers 2020, 12 (10), 2785. https://doi.org/10.3390/cancers12102785.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnálisis del efecto de la terapia doxorrubicina-losartán sobre el ciclo celular, la proliferación y la migración en células de cáncer colorrectal HCT116
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución