dc.contributor | Cabrales Arévalo, Sergio Andrés | |
dc.contributor | Medaglia González, Andrés L. | |
dc.contributor | Gildin, Eduardo | |
dc.contributor | Gómez Ramírez, Jorge Mario | |
dc.contributor | Calderón, Zuly | |
dc.contributor | Centro para la Optimización y Probabilidad Aplicada COPA | |
dc.creator | Rodríguez Castelblanco, Astrid Xiomara | |
dc.date.accessioned | 2023-07-28T14:22:36Z | |
dc.date.accessioned | 2023-09-06T23:44:42Z | |
dc.date.available | 2023-07-28T14:22:36Z | |
dc.date.available | 2023-09-06T23:44:42Z | |
dc.date.created | 2023-07-28T14:22:36Z | |
dc.date.issued | 2023-07-26 | |
dc.identifier | http://hdl.handle.net/1992/68869 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726791 | |
dc.description.abstract | In the face of increasing global energy demand and the need for energy transitions, improved decision-making processes in the oil and gas industry are essential. Waterflooding is a successful method for enhancing oil recovery. Numerical reservoir simulation software are essential tools for evaluating the waterflooding process before its implementation in a reservoir. However, this software can be expensive, requires extensive information, and it is challenging to calibrate and optimize. To address this issue, we propose a decision-making framework that employs machine learning models and metaheuristics for near-optimal well control management, ultimately achieving maximum profit and effective oilfield management.
Our research approach involves the dynamic reservoir evaluation and fluid production forecast using the diffusivity equation as a predictive numerical model. We reduce the computational time and resource consumption integrating a Proper Orthogonal Decomposition (POD) model to the diffusivity equation. With this model we reproduced the historical oil and water production rate based on the operational wells constraints. Due the high nonlinearity of the numerical predictive model and the challenge to incorporate it into the optimization algorithm we use machine learning models to predict oil and water production rates for each well under changing operational well constraints. The evaluated models are long short-term memory models, convolutional neural networks, and a combination of both. These models, along with the financial evaluation, are integrated into a non-linear optimization component. To solve this component, we use an Iterative Local Search, a metaheuristic that allows us to evaluate several scenarios and find a near-optimal solution. The decision variables are the bottom-hole pressure for each producer well and the water injection rate for each injector well. The objective function is to maximize the net present value.
Overall, our proposed framework seamlessly combines the accuracy of the numerical predictive models, the computational efficiency of the reduced-order models, the advantages of neural networks, and the search power of metaheuristics. This provides an efficient strategy for waterflooding optimization over the mid and short-term in practice. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Doctorado en Ingeniería | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Industrial | |
dc.relation | Agencia Nacional de Hidrocarburos (2023). Informe de Reservas y Recursos Contingentes de Hidrocarburos, Corte 31 de Diciembre 2022. | |
dc.relation | Ahmed, T. (2018). Reservoir engineering handbook. In Reservoir Engineering Handbook. https://doi.org/10.1016/C2016-0-04718-6 | |
dc.relation | Ahmed, T. (2019). Principles of Waterflooding. In Reservoir Engineering Handbook (pp. 901-1107). Elsevier. https://doi.org/10.1016/b978-0-12-813649-2.00014-1 | |
dc.relation | Alagorni, A., Yaacob, Z., & Nour, A. (2015). An Overview of Oil Production Stages: Enhanced Oil Recovery Techniques and Nitrogen Injection. International Journal of Environmental Science and Development, 6, 693-701. https://doi.org/10.7763/IJESD.2015.V6.682 | |
dc.relation | Acosta, A. (2017). El recobro mejorado: la tabla de salvación. | |
dc.relation | British Petroleum. (2019). BP Statistical Review of World Energy Statistical Review of World, 68th edition. In The Editor BP Statistical Review of World Energy. | |
dc.relation | Castro, R., Maya, G., Mantilla, J., Diaz, V., Amaya, R., Lobo, A., Ordoñez, A., & Villar, A. (2014). Waterflooding in Colombia: Past, present, and future. SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings. https://doi.org/10.2118/169459-sp | |
dc.relation | Economides, M., Zhu, D., Hill, D., & Ehlig-Economides, C. (2012). Petroleum Production Systems. Pearson. | |
dc.relation | Fragoso, A., Selvan, K., & Aguilera, R. (2018). Breaking a paradigm: Can oil recovery from shales be larger than oil recovery from conventional reservoirs? The answer is yes! Society of Petroleum Engineers - SPE Canada Unconventional Resources Conference, URC 2018, 2018-March. https://doi.org/10.2118/189784-ms | |
dc.relation | Green, D., & Willhite, P. (1998). Enhanced Oil Recovery (Vol. 6). Society of Petroleum Engineers Textbook Series. https://store.spe.org/Enhanced-Oil-Recovery--P21.aspx | |
dc.relation | Grema, A. S. (2014). Optimization of reservoir waterflooding (Issue October). Cranfield University. | |
dc.relation | Grema, A. S., & Cao, Y. (2016). Optimal feedback control of oil reservoir waterflooding processes. International Journal of Automation and Computing, 13(1), 73-80. https://doi.org/10.1007/s11633-015-0909-7 | |
dc.relation | Hou, J., Zhou, K., Zhang, X. S., Kang, X. D., & Xie, H. (2015). A review of closed-loop reservoir management. Petroleum Science, 12(1), 114-128. https://doi.org/10.1007/s12182-014-0005-6 | |
dc.relation | Hussein, A. (2023). Oil and Gas Production Operations and Production Fluids. In Essentials of Flow Assurance Solids in Oil and Gas Operations (pp. 1-52). Elsevier. https://doi.org/10.1016/B978-0-323-99118-6.00012-5 | |
dc.relation | IEA. (2020). The Oil and Gas Industry in Energy Transitions. https://www.iea.org/reports/the-oil-and-gas-industry-in-energy-transitions | |
dc.relation | International Labour Organization (ILO). (2022). The future of work in the oil and gas industry. | |
dc.relation | Jansen, J. D., Douma, S. D., Brouwer, D. R., Van Den Hof, P. M. J., Bosgra, O. H., & Heemink, A. W. (2009). Closed-loop reservoir management. SPE Reservoir Simulation Symposium Proceedings. https://doi.org/10.3997/1365-2397.2005002 | |
dc.relation | Kamal, M. M. (2020). Future need of petroleum engineering. SPE Western Regional Meeting Proceedings, 2020-April. https://doi.org/10.2118/200771-ms | |
dc.relation | Lake, L. W., & Fanchi, J. R. (2006). Petroleum Engineering Handbook - General Engineering. In Society of Petroleum Engineers: Vol. I. | |
dc.relation | Langnes, G. L., Robertson, J. O., Mehdizadeh, A., Torabzadeh, J., Yen, T. F., Donaldson, E. C., & Chilingarian, G. v. (1985). Waterflooding. Developments in Petroleum Science. https://doi.org/10.1016/S0376-7361(08)70570-3 | |
dc.relation | Latil, M. (2015). Enhanced oil recovery. https://doi.org/10.1016/B978-0-12-803734-8.00016-3 | |
dc.relation | Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T., & Salino, P. (2014). Recovery rates, enhanced oil recovery and technological limits. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 372, Issue 2006). Royal Society. https://doi.org/10.1098/rsta.2012.0320 | |
dc.relation | Naevdal, G., Brouwer, D., & Jansen, J. (n.d.). Water flooding using closed-loop control. Computational Geosciences, 10(1), 37-60. | |
dc.relation | Rafiei, Y. (2014). Improved Oil Production and Waterflood Performance by Water Allocation Management. March, 203. | |
dc.relation | Speight, J. (2016). Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands (2nd ed.). Elsevier. https://doi.org/10.1016/C2014-0-01296-8 | |
dc.relation | Udy, J., Hansen, B., Maddux, S., Petersen, D., Heilner, S., Stevens, K., Lignell, D., & Hedengren, J. D. (2017). Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes, 5(3). https://doi.org/10.3390/pr5030034 | |
dc.relation | Walid Al Shalabi, E., & Sepehrnoori, K. (2017). Introduction to Enhanced Oil Recovery Processes. In Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs (pp. 1-5). Elsevier. https://doi.org/10.1016/b978-0-12-813604-1.00001-8 | |
dc.relation | Yang, Z., & Ershaghi, I. (2005). A method for pattern recognition of WOR plots in waterflood management. SPE Western Regional Meeting, Proceedings, March 2005, 327-334. https://doi.org/10.2523/93870-ms | |
dc.relation | Zitha, P., Felder, R., Zornes, D., Brown, K., & Mohanty, K. (2023). Increasing Hydrocarbon Recovery Factors. | |
dc.relation | Ahmed, T., & McKinney, P. D. (2005). Predicting Oil Reservoir Performance. In Advanced Reservoir Engineering (pp. 327-363). Gulf Professional Publishing. https://doi.org/10.1016/B978-075067733-2/50007-1 | |
dc.relation | Al Selaiti, I., Mata, C., Saputelli, L., Badmaev, D., Alatrach, Y., Rubio, E., Mohan, R., & Quijada, D. (2020). Robust Data Driven Well Performance Optimization Assisted by Machine Learning Techniques for Natural Flowing and Gas-Lift Wells in Abu Dhabi. Proceedings - SPE Annual Technical Conference and Exhibition, 2020-October. https://doi.org/10.2118/201696-MS | |
dc.relation | Alenezi, F., & Mohaghegh, S. (2017). Developing a Smart Proxy for the SACROC Water-Flooding Numerical Reservoir Simulation Model. SPE Western Regional Meeting Proceedings, 2017-April, 349-360. https://doi.org/10.2118/185691-ms | |
dc.relation | Al-Yousef, A. A. (2006). Investigating statistical techniques to infer interwell connectivity from production and injection rate fluctuations. | |
dc.relation | Awasthi, U., Marmier, R., & Grossmann, I. E. (2019). Multiperiod optimization model for oilfield production planning: bicriterion optimization and two-stage stochastic programming model. Optimization and Engineering, 20(4), 1227-1248. https://doi.org/10.1007/s11081-019-09455-0 | |
dc.relation | Azad, A., & Chalaturnyk, R. J. (2013). Application of analytical proxy models in reservoir estimation for SAGD process: UTF-project case study. Journal of Canadian Petroleum Technology, 52(3), 219-232. https://doi.org/10.2118/165576-PA | |
dc.relation | bp. (2022). Statistical Review of World Energy 2022. | |
dc.relation | Brouwer, D. R., Nævdal, G., Jansen, J. D., Vefring, E. H., & Van Kruijsdijk, C. P. J. W. (2004). Improved reservoir management through optimal control and continuous model updating. Proceedings - SPE Annual Technical Conference and Exhibition. https://doi.org/10.2523/90149-ms | |
dc.relation | Buckley, S. E., & Leverett, M. C. (1942). Mechanism of Fluid Displacement in Sands. Transactions of the AIME, 146(01), 107-116. https://doi.org/10.2118/942107-G | |
dc.relation | Cao, F., Luo, H., & Lake, L. W. (2015). Oil-rate forecast by inferring fractional-flow models from field data with Koval method combined with the capacitance/resistance model. SPE Reservoir Evaluation and Engineering, 18(4), 534-553. https://doi.org/10.2118/173315-PA | |
dc.relation | Carrion, J., & Villegas, J. (2022). Optimizacion de producción aplicando técnicas de waterflooding management (WFM) y machine learning en el reservorio "U Inferior" del sector norte del campo Shushufindi-Aguarico-Bloque 57. Universidad Estatal Península de Santa Elena. | |
dc.relation | Castro, R., Maya, G., Mantilla, J., Diaz, V., Amaya, R., Lobo, A., Ordoñez, A., & Villar, A. (2014). Waterflooding in Colombia: Past, present, and future. SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings. https://doi.org/10.2118/169459-sp | |
dc.relation | Chen, C., Yang, M., & Han, X. (2019). SPE-197585-MS Water Flooding Performance Prediction in Layered Reservoir Using Big Data and Artificial Intelligence Algorithms. http://onepetro.org/SPEADIP/proceedings-pdf/19ADIP/3-19ADIP/D032S184R002/1124030/spe-197585-ms.pdf | |
dc.relation | Craig, J., Geffen, T., & Morse, R. (1955). Oil Recovery Performance Of Pattern Gas Or Water Injection Operations From Model Tests. Society of Petroleum Engineers. https://www.onepetro.org/general/SPE-413-G?sort=&start=0&q=CRAIG+F.%2C+GEFFEN+T.%2C+MORSE+R.+Oil+Recovery+Performance+of+pattern+gas+or+water+injection+operations+from+model+tests+&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_yea | |
dc.relation | DNV. (2022). Energy Transition Outlook 2022 . https://www.dnv.com/energy-transition-outlook/download.html?utm_source=Google&utm_medium=Search&utm_campaign=eto22&gclid=Cj0KCQiA0oagBhDHARIsAI-BbgdX2I8j6XAHdsvOSLG1VAeAOlJqdeYi6aTEtpfqWCNJuh8ymp0Yct0aAv3JEALw_wcB | |
dc.relation | Doren, J. F. M., Markovinovi, R., & Jansen, J. D. (2006). Reduced-order optimal control of water flooding using proper orthogonal decomposition. Computational Geosciences 2006 10:1, 10(1), 137-158. https://doi.org/10.1007/S10596-005-9014-2 | |
dc.relation | Dykstra, H., & Parsons, R. L. (1950). The Prediction of Oil Recovery by Waterflooding in Secondary Recovery of Oil in the United States. . In API (2nd Editio). https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=2141749 | |
dc.relation | Eltaher, E., Sefat, M. H., Muradov, K., & Davies, D. (2014). Performance of autonomous inflow control completion in heavy oil reservoirs. Society of Petroleum Engineers - International Petroleum Technology Conference 2014, IPTC 2014 - Innovation and Collaboration: Keys to Affordable Energy, 3, 2381-2402. https://doi.org/10.2523/iptc-17977-ms | |
dc.relation | Ertekin, T., & Sun, Q. (2019). Artificial intelligence applications in reservoir engineering: A status check. Energies, 12(15). https://doi.org/10.3390/EN12152897 | |
dc.relation | Ertekin, T., Sun, Q., & Zhang, J. (2019). Reservoir Simulation: Problems and Solutions. Society of Petroleum Engineers | |
dc.relation | Ertekin, Turgay., Abou-Kassem, J. H., & King, G. R. (2000). Basic Applied Reservoir Simulation. (Vol. 7). Society of Petroleum Engineers. | |
dc.relation | Foss, B., Knudsen, B. R., & Grimstad, B. (2018). Petroleum production optimization A static or dynamic problem? Computers and Chemical Engineering, 114, 245-253. https://doi.org/10.1016/j.compchemeng.2017.10.009 | |
dc.relation | Gomez, M. P., & Naranjo, C. E. (1993). Sistematización de los modelos matemáticos usados en los métodos de predicción del comportamiento de la inyección de agua. Universidad Industrial de Santander. | |
dc.relation | Green, D., & Willhite, P. (1998). Enhanced Oil Recovery (Vol. 6). Society of Petroleum Engineers Textbook Series. https://store.spe.org/Enhanced-Oil-Recovery--P21.aspx | |
dc.relation | He, Q., Mohaghegh, S. D., & Liu, Z. (2016). Reservoir simulation using smart proxy in SACROC unit - Case study. SPE Eastern Regional Meeting, 2016-Janua(Rwechungura 2011). https://doi.org/10.2118/184069-MS | |
dc.relation | Hou, J., Zhou, K., Zhang, X. S., Kang, X. D., & Xie, H. (2015). A review of closed-loop reservoir management. Petroleum Science, 12(1), 114-128. https://doi.org/10.1007/s12182-014-0005-6 | |
dc.relation | Jansen, J.-D., Brouwer, R., & Douma, S. G. (2009, April 4). Closed Loop Reservoir Management. SPE Reservoir Simulation Symposium. https://doi.org/10.2118/119098-MS | |
dc.relation | Kamal, M. M. (2020). Future need of petroleum engineering. SPE Western Regional Meeting Proceedings, 2020-April. https://doi.org/10.2118/200771-ms | |
dc.relation | Kaviani, D., Soroush, M., & Jensen, J. L. (2014). How accurate are Capacitance Model connectivity estimates? Journal of Petroleum Science and Engineering, 122, 439-452. https://doi.org/10.1016/j.petrol.2014.08.003 | |
dc.relation | Langnes, G. L., Robertson, J. O., Mehdizadeh, A., Torabzadeh, J., Yen, T. F., Donaldson, E. C., & Chilingarian, G. v. (1985). Waterflooding. Developments in Petroleum Science. https://doi.org/10.1016/S0376-7361(08)70570-3 | |
dc.relation | Lee, J. W., & Gildin, E. (2020a). A New Framework for Compositional Simulation Using Reduced Order Modeling Based on POD-DEIM. http://onepetro.org/SPELACP/proceedings-pdf/19LACP/4-19LACP/D041S028R001/2356560/spe-198946-ms.pdf/1 | |
dc.relation | Li, C. C. (2017). Numerical Modeling. In Rockbolting (pp. 201-213). Elsevier. https://doi.org/10.1016/B978-0-12-804401-8.00008-9 | |
dc.relation | Lozovskiy, A., Farthing, M., Kees, C., & Gildin, E. (2016). POD-based model reduction for stabilized finite element approximations of shallow water flows. Journal of Computational and Applied Mathematics, 302, 50-70. https://doi.org/10.1016/J.CAM.2016.01.029 | |
dc.relation | Marii, K., Branko, L., & Duan, D. (2014). Factors influencing successful implementation of enhanced oil recovery projects. January 2014. https://doi.org/10.5937/podrad1425041K | |
dc.relation | Michael Economides, Daniel Hill, & Christine Ehlig-Economides. (1994). Petroleum Production Systems (Betty Sun, Camille Thentacoste, Kim Intindola, & Wanda Lubelska, Eds.). Prentice Hall, PTR. | |
dc.relation | Ng, C. S. W., Jahanbani Ghahfarokhi, A., & Nait Amar, M. (2022). Production optimization under waterflooding with Long Short-Term Memory and metaheuristic algorithm. Petroleum. https://doi.org/https://doi.org/10.1016/j.petlm.2021.12.008 | |
dc.relation | Nguyen, A. P., Kim, J. S., Lake, L. W., Edgar, T. F., & Haynes, B. (2011, April 4). Integrated Capacitance Resistive Model for Reservoir Characterization in Primary and Secondary Recovery. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/147344-MS | |
dc.relation | Oliver, D. S., & Chen, Y. (2011). Recent progress on reservoir history matching: A review. In Computational Geosciences (Vol. 15, Issue 1, pp. 185-221). Springer. https://doi.org/10.1007/s10596-010-9194-2 | |
dc.relation | Paris de Ferrer, M. (2001). Inyección de agua y gas en yacimientos petroliferos. In Inyección De Agua Y Gas En Yacimientos Petroliferos. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Pinto, M., Ghasemi, M., Sorek, N., Gildin, E., & Schiozer, D. (2015, February). Hybrid Optimization for Closed-Loop Reservoir Management. Society of Petroleum Engineers - SPE Reservoir Simulation Symposium. SPE-173278-MS. https://doi.org/https://doi.org/SPE-173278-MS | |
dc.relation | Prakasa, B., Muradov, K., & Davies, D. (2019). Linear and radial flow modelling of a waterflooded, stratified, non-communicating reservoir developed with downhole, flow control completions. Journal of Petroleum Science and Engineering, 182, 106340. https://doi.org/10.1016/j.petrol.2019.106340 | |
dc.relation | Rodriguez, A. X., Aristizábal, J., Cabrales, S., Gómez, J. M., & Medaglia, A. L. (2022). Optimal waterflooding management using an embedded predictive analytical model. Journal of Petroleum Science and Engineering, 208, 109419. https://doi.org/10.1016/J.PETROL.2021.109419 | |
dc.relation | Rodriguez, A. X., & Salazar, D. A. (2022). Methodology for the prediction of fluid production in the waterflooding process based on multivariate long'short term memory neural networks. Journal of Petroleum Science and Engineering, 208, 109715. https://doi.org/10.1016/J.PETROL.2021.109715 | |
dc.relation | Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203-213. https://doi.org/10.1016/j.neucom.2018.09.082 | |
dc.relation | Sayarpour, M., Zuluaga, E., Kabir, C. S., & Lake, L. W. (2009). The use of capacitance resistance models for rapid estimation of waterflood performance and optimization. Journal of Petroleum Science and Engineering, 69(3-4), 227-238. https://doi.org/10.1016/j.petrol.2009.09.006 | |
dc.relation | tefnescu, R., Sandu, A., & Navon, I. M. (2015). POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. Journal of Computational Physics, 295, 569-595. https://doi.org/10.1016/J.JCP.2015.04.030 | |
dc.relation | Stiles, Wm. E. (1949). Use of Permeability Distribution in Water Flood Calculations. Journal of Petroleum Technology, 1(01), 9-13. https://doi.org/10.2118/949009-G | |
dc.relation | Tang, H., Volkov, O., Tchelepi, H. A., & Durlofsky, L. J. (2021). Reduced-Order Modeling in a General Reservoir Simulation Setting. SPE Western Regional Meeting Proceedings, 2020-April. https://doi.org/10.2118/200794-MS | |
dc.relation | Tang, L., Li, J., Lu, W., Lian, P., Wang, H., Jiang, H., Wang, F., & Jia, H. (2021). Well Control Optimization of Waterflooding Oilfield Based on Deep Neural Network. https://doi.org/10.1155/2021/8873782 | |
dc.relation | Timonov, A., Shabonas, A., & Schmidt, S. (2021). Field Development Optimization Using Machine Learning Methods to Identify the Optimal Water Flooding Regime. http://onepetro.org/SPERPTC/proceedings-pdf/21RPTC/2-21RPTC/D021S006R007/2512277/spe-206533-ms.pdf/1 | |
dc.relation | Udy, J., Hansen, B., Maddux, S., Petersen, D., Heilner, S., Stevens, K., Lignell, D., & Hedengren, J. D. (2017). Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes, 5(3). https://doi.org/10.3390/pr5030034 | |
dc.relation | U.S. Energy Information Administration (EIA). (2021). International Energy Outlook Consumption - 2021 . https://www.eia.gov/outlooks/ieo/narrative/consumption/sub-topic-01.php | |
dc.relation | Volkwein, S. (2013). Proper orthogonal decomposition: Theory and reduced-order modelling. In Lecture Notes, Department of Mathematics and Statistics, University of Konstanz. | |
dc.relation | Wanderley de Holanda, R., Gildin, E., & Jensen, J. L. (2018). A generalized framework for Capacitance Resistance Models and a comparison with streamline allocation factors. Journal of Petroleum Science and Engineering, 162, 260-282. https://doi.org/10.1016/j.petrol.2017.10.020 | |
dc.relation | Weber, D., Edgar, T. F., Lake, L. W., Lasdon, L., Kawas, S., & Sayarpour, M. (2009). Improvements in capacitance-resistive modeling and optimization of large scale reservoirs. SPE Western Regional Meeting 2009 - Proceedings, 369-385. https://doi.org/10.2118/121299-ms | |
dc.relation | Yang, Z., & Ershaghi, I. (2005). A method for pattern recognition of WOR plots in waterflood management. SPE Western Regional Meeting, Proceedings, March 2005, 327-334. https://doi.org/10.2523/93870-ms | |
dc.relation | Yin, J., Park, H. Y., Datta-Gupta, A., King, M. J., & Choudhary, M. K. (2011). A hierarchical streamline-assisted history matching approach with global and local parameter updates. Journal of Petroleum Science and Engineering, 80(1), 116-130. https://doi.org/10.1016/j.petrol.2011.10.014 | |
dc.relation | Zhong, Z., Sun, A. Y., Wang, Y., & Ren, B. (2020). Predicting field production rates for waterflooding using a machine learning-based proxy model. Journal of Petroleum Science and Engineering, 194. https://doi.org/10.1016/j.petrol.2020.107574 | |
dc.relation | Zhou, W., Samson, B., Krishnamurthy, S., Tilke, P., Banerjee, R., Spath, J., & Thambynayagam, M. (2013). Analytical reservoir simulation and its applications to conventional and unconventional resources. 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers, 2907-2919. https://doi.org/10.3997/2214-4609.20130861 | |
dc.relation | Zubarev, D. I. (2009). Pros and cons of applying proxy-models as a substitute for full reservoir simulations. Proceedings - SPE Annual Technical Conference and Exhibition, 5(07), 3234-3256. https://doi.org/10.2118/0710-0041-jpt | |
dc.relation | Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623-2631. http://arxiv.org/abs/1907.10902 | |
dc.relation | Cabrales, S., Bautista, R., & Benavides, J. (2017). A model to assess the impact of employment policy and subsidized domestic fuel prices on national oil companies. Energy Economics. https://doi.org/10.1016/j.eneco.2017.10.038 | |
dc.relation | Capolei, A., Suwartadi, E., Foss, B., & Jørgensen, J. B. (2013). Waterflooding optimization in uncertain geological scenarios. Computational Geosciences, 17(6), 991-1013. https://doi.org/10.1007/s10596-013-9371-1 | |
dc.relation | Craft, B. C., Hawkins, M. F., & Terry, R. E. (2007). Petroleum Engineering Handbook- Volume V RESERVOIR ENGINEERING and PETROPHYSICS. In Petroleum Engineering Handbook: Vol. V. | |
dc.relation | Craig, F. F. (1971). The reservoir engineering aspects of waterflooding. NEW YORK, U.S.A., AM. INST. MIN. METALL. & PET. ENGRS. INC., 1971. | |
dc.relation | Dixit, A. K., & Pindyck, R. S. (1994). Investment under Uncertainty. Princeton University Press. https://doi.org/10.2307/j.ctt7sncv | |
dc.relation | Doren, J. F. M., Markovinovi, R., & Jansen, J. D. (2006). Reduced-order optimal control of water flooding using proper orthogonal decomposition. Computational Geosciences 2006 10:1, 10(1), 137-158. https://doi.org/10.1007/S10596-005-9014-2 | |
dc.relation | Ertekin, T., Abou-Kassem, J., & Gregory King. (2011). Basic Applied Reservoir Simulation. Society of Petroleum Engineers (SPE). | |
dc.relation | Ertekin, T., Sun, Q., & Zhang, J. (2019). Reservoir Simulation: Problems and Solutions. Society of Petroleum Engineers. | |
dc.relation | Gendreau, M., & Potvin, J.-Y. (2019). Handbook of Metaheuristics. https://doi.org/https://doi.org/10.1007/978- 3- 319- 91086- 4 | |
dc.relation | Ghasemi, M., & Gildin, E. (2016). Localized model order reduction in porous media flow simulation. Journal of Petroleum Science and Engineering, 145, 689-703. https://doi.org/10.1016/j.petrol.2016.06.030 | |
dc.relation | Graves, A. (2012). Long Short-Term Memory (pp. 37-45). https://doi.org/10.1007/978-3-642-24797-2_4 | |
dc.relation | Horowitz, B., Afonso, S. M. B., & de Mendonça, C. V. P. (2013). Surrogate based optimal waterflooding management. Journal of Petroleum Science and Engineering, 112, 206-219. https://doi.org/10.1016/j.petrol.2013.11.006 | |
dc.relation | Lake, L. W., & Fanchi, J. R. (2006). Petroleum Engineering Handbook - General Engineering. In Society of Petroleum Engineers: Vol. I. | |
dc.relation | Lee, J. W., & Gildin, E. (2020). A New Framework for Compositional Simulation Using Reduced Order Modeling Based on POD-DEIM. SPE Latin American and Caribbean Petroleum Engineering Conference Proceedings, 2020-July. https://doi.org/10.2118/198946-MS | |
dc.relation | Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194). https://doi.org/10.1098/RSTA.2020.0209 | |
dc.relation | Lourenço, H. R., Martin, O. C., & Stützle, T. (2018). Iterated Local Search: Framework and Applications. Handbook of Metaheuristics, 363-397. https://doi.org/10.1007/978-1-4419-1665-5_12 | |
dc.relation | Luchtenburg, D., Noack, B. R., & Schlegel, M. (2009). An introduction to the POD Galerkin method for fluid flows with analytical examples and MATLAB source codes. In Technical Report, Berlin Institute of Technology MB1. | |
dc.relation | Lyons, W. C., Plisga, G. J., & Lorenz, M. D. (2015). Standard Handbook of Petroleum and Natural Gas Engineering. In Standard Handbook of Petroleum and Natural Gas Engineering. https://doi.org/10.1016/B978-0-12-383846-9.09991-4 | |
dc.relation | Nicholson, C. (n.d.). A Beginner's Guide to LSTMs and Recurrent Neural Networks. Retrieved April 17, 2023, from https://wiki.pathmind.com/lstm | |
dc.relation | Olah, C. (2015). Understanding LSTM Networks -- colah's blog. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ | |
dc.relation | Pinto, M., Ghasemi, M., Sorek, N., Gildin, E., & Schiozer, D. (2015, February). Hybrid Optimization for Closed-Loop Reservoir Management. Society of Petroleum Engineers - SPE Reservoir Simulation Symposium. SPE-173278-MS. https://doi.org/https://doi.org/SPE-173278-MS | |
dc.relation | Tang, H., Volkov, O., Tchelepi, H. A., & Durlofsky, L. J. (2020). SPE-200794-MS Reduced-Order Modeling in a General Reservoir Simulation Setting. http://onepetro.org/SPEWRM/proceedings-pdf/20WRM/1-20WRM/D011S008R001/2410107/spe-200794-ms.pdf/1 | |
dc.relation | Tang, L., Li, J., Lu, W., Lian, P., Wang, H., Jiang, H., Wang, F., & Jia, H. (2021). Well Control Optimization of Waterflooding Oilfield Based on Deep Neural Network. https://doi.org/10.1155/2021/8873782 | |
dc.relation | Tariq, Z., Aljawad, M. S., Hasan, A., Murtaza, M., Mohammed, E., El-Husseiny, A., Alarifi, S. A., Mahmoud, M., & Abdulraheem, A. (2021). A systematic review of data science and machine learning applications to the oil and gas industry. In Journal of Petroleum Exploration and Production Technology (Vol. 11, Issue 12). https://doi.org/10.1007/s13202-021-01302-2 | |
dc.relation | Tealab, A. (2018). Time Series Forecasting using Artificial Neural Networks Methodologies: A Systematic Review. Future Computing and Informatics Journal, 3. https://doi.org/10.1016/j.fcij.2018.10.003 | |
dc.relation | Timonov, A., Shabonas, A., & Schmidt, S. (2021). Field Development Optimization Using Machine Learning Methods to Identify the Optimal Water Flooding Regime. http://onepetro.org/SPERPTC/proceedings-pdf/21RPTC/2-21RPTC/D021S006R007/2512277/spe-206533-ms.pdf/1 | |
dc.relation | Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical Review. https://doi.org/10.1103/PhysRev.36.823 | |
dc.relation | Volkwein, S. (2013). Proper orthogonal decomposition: Theory and reduced-order modelling. In Lecture Notes, Department of Mathematics and Statistics, University of Konstanz. | |
dc.relation | Weber, D., Edgar, T. F., Lake, L. W., Lasdon, L., Kawas, S., & Sayarpour, M. (2009). Improvements in capacitance-resistive modeling and optimization of large scale reservoirs. SPE Western Regional Meeting 2009 - Proceedings, 369-385. https://doi.org/10.2118/121299-ms | |
dc.relation | Weiss, J. (2019). A Tutorial on the Proper Orthogonal Decomposition. 2019 AIAA Aviation Forum. https://doi.org/10.2514/6.2019-3333 | |
dc.relation | Yang, Z., & Ershaghi, I. (2005). A method for pattern recognition of WOR plots in waterflood management. SPE Western Regional Meeting, Proceedings, March 2005, 327-334. https://doi.org/10.2523/93870-ms | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Decision-making framework to optimize the waterflooding process in an oilfield using reduced-order models and machine learning | |
dc.type | Trabajo de grado - Doctorado | |