dc.contributorPorras Holguín, Niyireth Alicia
dc.contributorMarañón León, Edgar Alejandro
dc.contributorHernández Acevedo, Camilo
dc.contributorGómez Ramírez, Jorge Mario
dc.contributorArias Tapias, Mary Judith
dc.contributorGrupo de Diseño de Productos y Procesos (GDPP)
dc.creatorPorras Cárdenas, Juan Sebastián
dc.date.accessioned2033-06-30
dc.date.accessioned2023-09-06T23:41:12Z
dc.date.available2033-06-30
dc.date.available2023-09-06T23:41:12Z
dc.date.created2033-06-30
dc.date.issued2023-06-30
dc.identifierhttp://hdl.handle.net/1992/69439
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726738
dc.description.abstractThis work presents the development and characterization of a novel natural fiber composite material from an acrylic thermoplastic resin (Elium® resin) and Colombian Manicaria saccifera fabric. In addition, to determine whether the composite could be incorporated into a circular economy model that promotes the responsible use of natural resources, low-impact manufacturing technologies, and recycling and reuse of materials at the end of their life cycle, the effect of mechanical recycling on the composite was evaluated.
dc.description.abstractEn este trabajo se presenta el desarrollo y caracterización de un novedoso material compuesto reforzado con fibras naturales hecho a partir de una resina acrílica termoplástica (resina Elium®) y tejido de Manicaria saccifera colombiana. Adicionalmente, se evaluó el efecto del reciclaje mecánico sobre el compuesto con el fin de determinar si este podría ser incorporado en un modelo de economía circular que promueve el uso responsable de recursos naturales, las tecnologías de manufactura de bajo impacto y el reciclaje y reutilización de materiales al final de su ciclo de vida.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationKaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, 2018.
dc.relationHoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, 2012; Vol. 15.
dc.relationUnited Nations. The Sustainable Development Goals Report 2022; United Nations Publications: New York, 2022.
dc.relationBlomqvist, E.; Waltré, N.; Sjöström, E. Investor Brief: Recycled Materials for Sustainable Investments; 2020.
dc.relationHolland Circular Hotspot. Waste Management Country Report: Colombia; Waste Management in the LATAM Region, 2021.
dc.relationArockiam JeyaSundar, P.G.S.; Ali, A.; Guo, di; Zhang, Z. Waste Treatment Approaches for Environmental Sustainability. Microorg. Sustain. Environ. Health 2020, 119-135, doi:10.1016/B978-0-12-819001-2.00006-1.
dc.relationSingh, O. Forecasting Trends in the Generation and Management of Hazardous Waste. Hazard. Waste Manag. Overv. Adv. Cost-Eff. Solut. 2022, 465-489, doi:10.1016/B978-0-12-824344-2.00015-X.
dc.relationHertwich, E.G. Increased Carbon Footprint of Materials Production Driven by Rise in Investments. Nat. Geosci. 2021 143 2021, 14, 151-155, doi:10.1038/s41561-021-00690-8.
dc.relationAshby, M.F. Big Issues Involving Materials. Mater. Sustain. Dev. 2024, 313-330, doi:10.1016/B978-0-323-98361-7.00012-9.
dc.relationMwanza, B.G. Introduction to Recycling. 2021, 1-13, doi:10.1007/978-981-16-3627-1_1.
dc.relationDi Paolo, L.; Abbate, S.; Celani, E.; Di Battista, D.; Candeloro, G. Carbon Footprint of Single-Use Plastic Items and Their Substitution. Sustain. 2022 Vol 14 Page 16563 2022, 14, 16563, doi:10.3390/SU142416563.
dc.relationd'Ambrières, W. Plastics Recycling Worldwide: Current Overview and Desirable Changes. http://journals.openedition.org/factsreports 2019, 12-21.
dc.relationZheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Change 2019 95 2019, 9, 374-378, doi:10.1038/s41558-019-0459-z.
dc.relationNgo, T.-D.; Ngo, T.-D. Introduction to Composite Materials. Compos. Nanocomposite Mater. - Knowl. Ind. Appl. 2020, doi:10.5772/INTECHOPEN.91285.
dc.relationTanasa, F.; Teaca, C.A.; Nechifor, M.; Zanoaga, M. Multicomponent Polymer Systems Based on Agro-Industrial Waste. Bioplastics Sustain. Dev. 2021, 467-513, doi:10.1007/978-981-16-1823-9_18/FIGURES/3.
dc.relationSoroudi, A.; Jakubowicz, I. Recycling of Bioplastics, Their Blends and Biocomposites: A Review. Eur. Polym. J. 2013, 49, 2839-2858, doi:10.1016/J.EURPOLYMJ.2013.07.025.
dc.relationHaraguchi, K. Biocomposites. Encycl. Polym. Nanomater. 2014, 1-8, doi:10.1007/978-3-642-36199-9_316-1.
dc.relationChawla, K.K. Composite Materials: Science and Engineering, Third Edition. Compos. Mater. Sci. Eng. Third Ed. 2012, 1-542, doi:10.1007/978-0-387-74365-3/COVER.
dc.relationMelendi-Espina, S.; Morris, C.; Turner, T.; Pickering, S. Recycling of Carbon Fibre Composites; 2016.
dc.relationMonteiro, A.S.; Dantas, D.; Yojo, T. Preparation of Amazonian Palm Tree Fiber (Manicaria Saccifera Gaertn.) for Composite Materials. UPorto J. Eng. 2021, 7, 31-36, doi:10.24840/2183-6493_007.002_0005.
dc.relationPorras, A.; Maranon, A.; Ashcroft, I.A. Optimal Tensile Properties of a Manicaria-Based Biocomposite by the Taguchi Method. Compos. Struct. 2016, 140, 692-701, doi:10.1016/j.compstruct.2016.01.042.
dc.relationPorras, A.; Maranon, A.; Ashcroft, I.A. Thermo-Mechanical Characterization of Manicaria Saccifera Natural Fabric Reinforced Poly-Lactic Acid Composite Lamina. Compos. Part Appl. Sci. Manuf. 2016, 81, 105-110, doi:10.1016/j.compositesa.2015.11.008.
dc.relationPorras, A.; Maranon, A.; Ashcroft, I.A. Characterization of a Novel Natural Cellulose Fabric from Manicaria Saccifera Palm as Possible Reinforcement of Composite Materials. Compos. Part B Eng. 2015, 74, 66-73, doi:10.1016/j.compositesb.2014.12.033.
dc.relationOliveira, J.R.; Kotzebue, L.R.V.; Freitas, D.B.; Mattos, A.L.A.; da Costa Júnior, A.E.; Mazzetto, S.E.; Lomonaco, D. Towards Novel High-Performance Bio-Composites: Polybenzoxazine-Based Matrix Reinforced with Manicaria Saccifera Fabrics. Compos. Part B Eng. 2020, 194, 108060, doi:10.1016/J.COMPOSITESB.2020.108060.
dc.relationOliveira, A.; D'Almeida, J. Description of the Mechanical Behavior of Different Thermoset Composites Reinforced with Manicaria Saccifera Fibers. http://dx.doi.org/10.1177/0021998313484622 2013, 48, 1189-1196, doi:10.1177/0021998313484622.
dc.relationProgar, D.J. Adhesive Evaluation of LARC-TPI and a Water-Soluble Version of LARC-TPI. Int. J. Adhes. Adhes. 1986, 6, 12-20, doi:10.1016/0143-7496(86)90066-7.
dc.relationEl-Sonbati, A.Z. Thermoplastic - Composite Materials. Thermoplast. - Compos. Mater. 2012, doi:10.5772/2637.
dc.relationArkema. Recyclable Thermoplastic Composites Sailboat Construction Project: Skipper Story of Engagement for Sustainability. Available online: https://www.arkema.com/global/en/resources/post/sailing-recycling-opens-up-new-opportunities/.
dc.relationArkema. Liquid Thermoplastic Resin for Tougher Composites; Arkema Global, 2019.
dc.relationKamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polym. 2022 Vol 14 Page 3698 2022, 14, 3698, doi:10.3390/POLYM14173698.
dc.relationMohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, doi:10.1155/2015/243947.
dc.relationMohanty, A.K.; Misra, M. Studies on Jute Composites-A Literature Review. http://dx.doi.org/10.1080/03602559508009599 2006, 34, 729-792, doi:10.1080/03602559508009599.
dc.relationGon, D.; Das, K.; Paul, P.; Maity, S. Jute Composites as Wood Substitute. Int. J. Text. Sci. 2013, 1, 84-93, doi:10.5923/J.TEXTILE.20120106.05.
dc.relationYan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites A Review. Compos. Part B Eng. 2014, 56, 296-317, doi:10.1016/J.COMPOSITESB.2013.08.014.
dc.relationBax, B.; Müssig, J. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Compos. Sci. Technol. 2008, 68, 1601-1607, doi:10.1016/J.COMPSCITECH.2008.01.004.
dc.relationDrouhet, Q.; Touchard, F.; Chocinski-Arnault, L. Tensile Behavior of [0/90]7 Hemp/Elium Biocomposites after Water Aging: In-Situ Micro-CT Testing and Numerical Analysis. Micro 2023 Vol 3 Pages 496-509 2023, 3, 496-509, doi:10.3390/MICRO3020033.
dc.relationGuillaumat, L.; Terekhina, S.; Derbali, I.; Monti, A.; El Mahi, A.; Jendli, Z. Flax Fibers Reinforced Thermoplastic Resin Based Biocomposites, a Future for Sustainable Composite Parts. MATEC Web Conf. 2018, 203, 06019, doi:10.1051/MATECCONF/201820306019.
dc.relationAllagui, S.; El Mahi, A.; Rebiere, J.L.; Bouguecha, A.; Haddar, M. In-Situ Health Monitoring of Thermoplastic Bio-Composites Using Acoustic Emission. https://doi.org/10.1177/08927057231154548 2023, doi:10.1177/08927057231154548.
dc.relationDrouhet, Q.; Touchard, F.; Chocinski-Arnault, L. Influence of Hygrothermal Aging on Mechanical Properties and Damage Mechanisms of Hemp-Reinforced Biocomposites. https://doi.org/10.1080/15440478.2022.2126424 2022, 19, 15404-15421, doi:10.1080/15440478.2022.2126424.
dc.relationMohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002, 10, 19-26, doi:10.1023/A:1021013921916/METRICS.
dc.relationUnited Nations. The Paris Agreement. 2015. Available online: https://www.un.org/en/climatechange/paris-agreement.
dc.relationBogoeva-Gaceva, G.; Avella, M.; Malinconico, M.; Buzarovska, A.; Grozdanov, A.; Gentile, G.; Errico, M.E. Natural Fiber Eco-Composites. Polym. Compos. 2007, 28, 98-107, doi:10.1002/pc.20270.
dc.relationNabi, D.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351-363.
dc.relationMohanty, A.K.; Drzal, L.T.; Group, F. NATURAL FIBERS , BIOPOLYMERS , AND BIOCOMPOSITES; 2005; ISBN 978-0-8493-1741-5.
dc.relationGuimarães, J.L.; Frollini, E.; Silva, C.G. da; Wypych, F.; Satyanarayana, K.G. Characterization of Banana, Sugarcane Bagasse and Sponge Gourd Fibers of Brazil. Ind. Crops Prod. 2009, 30, 407-415, doi:10.1016/j.indcrop.2009.07.013.
dc.relationHolbery, J.; Houston, D. Natural-Fiber-Reinforced Polymer Composites in Automotive Applications. JOM 2006, 58, 80-86, doi:10.1007/S11837-006-0234-2/METRICS.
dc.relationPorras, A.; Maranon, A. Development and Characterization of a Laminate Composite Material from Polylactic Acid (PLA) and Woven Bamboo Fabric. Compos. Part B Eng. 2012, 43, 2782-2788, doi:10.1016/j.compositesb.2012.04.039.
dc.relationQuintero, S.; Porras, A.; Hernandez, C.; Maranon, A. The Response of Manicaria Saccifera Natural Fabric Reinforced PLA Composites to Impact by Fragment Simulating Projectiles. Adv. Nat. Fibre Compos. 2018, 89-98, doi:10.1007/978-3-319-64641-1_9.
dc.relationSeyam, A.F.M.; Monteiro, A.S.; Midani, M.; Baruque-Ramos, J. Effect of Structural Parameters on the Tensile Properties of Multilayer 3D Composites from Tururi Palm Tree (Manicaria Saccifera Gaertn) Fibrous Material. Compos. Part B Eng. 2017, 111, 17-26, doi:10.1016/J.COMPOSITESB.2016.11.040.
dc.relationKazemi, M.E.; Shanmugam, L.; Lu, D.; Wang, X.; Wang, B.; Yang, J. Mechanical Properties and Failure Modes of Hybrid Fiber Reinforced Polymer Composites with a Novel Liquid Thermoplastic Resin, Elium®. Compos. Part Appl. Sci. Manuf. 2019, 125, 105523, doi:10.1016/J.COMPOSITESA.2019.105523.
dc.relationKazemi, M.E.; Shanmugam, L.; Dadashi, A.; Shakouri, M.; Lu, D.; Du, Z.; Hu, Y.; Wang, J.; Zhang, W.; Yang, L.; et al. Investigating the Roles of Fiber, Resin, and Stacking Sequence on the Low-Velocity Impact Response of Novel Hybrid Thermoplastic Composites. Compos. Part B Eng. 2021, 207, 108554, doi:10.1016/J.COMPOSITESB.2020.108554.
dc.relationFrej, H.B.H.; Léger, R.; Perrin, D.; Ienny, P. A Novel Thermoplastic Composite for Marine Applications: Comparison of the Effects of Aging on Mechanical Properties and Diffusion Mechanisms. Appl. Compos. Mater. 2021 284 2021, 28, 899-922, doi:10.1007/S10443-021-09903-0.
dc.relationAlshahrani, H.; Ahmed, A.; Kabrein, H.; Prakash, V.R.A.; Alshahrani, H.; Ahmed, A.; Kabrein, H.; Prakash, V.R.A. Mechanical Properties Study on Sandwich Composites of Glass Fiber Reinforced Plastics (GFRP) Using Liquid Thermoplastic Resin, Elium®: Preliminary Experiments. Coat. 2022 Vol 12 Page 1423 2022, 12, 1423, doi:10.3390/COATINGS12101423.
dc.relationBhudolia, S.K.; Joshi, S.C.; Bert, A.; Di, B.Y.; Makam, R.; Gohel, G. Flexural Characteristics of Novel Carbon Methylmethacrylate Composites. Compos. Commun. 2019, 13, 129-133, doi:10.1016/J.COCO.2019.04.007.
dc.relationFrej, H.B.H.; Léger, R.; Perrin, D.; Ienny, P.; Gérard, P.; Devaux, J.F. Recovery and Reuse of Carbon Fibre and Acrylic Resin from Thermoplastic Composites Used in Marine Application. Resour. Conserv. Recycl. 2021, 173, 105705, doi:10.1016/J.RESCONREC.2021.105705.
dc.relationMurray, R.E.; Swan, D.; Snowberg, D.; Berry, D.; Beach, R.; Rooney, S. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade. Proc. Am. Soc. Compos. Â Thirty-Second Tech. Conf. 2017, 0, 29-43, doi:10.12783/ASC2017/15166.
dc.relationKazemi, M.E.; Bodaghi, M.; Shanmugam, L.; Fotouhi, M.; Yang, L.; Zhang, W.; Yang, J. Developing Thermoplastic Hybrid Titanium Composite Laminates (HTCLS) at Room Temperature: Low-Velocity Impact Analyses. Compos. Part Appl. Sci. Manuf. 2021, 149, 106552, doi:10.1016/J.COMPOSITESA.2021.106552.
dc.relationKhalili, P.; Skrifvars, M.; Ertürk, A.S. Fabrication, Mechanical Testing and Structural Simulation of Regenerated Cellulose Fabric Elium® Thermoplastic Composite System. Polym. 2021 Vol 13 Page 2969 2021, 13, 2969, doi:10.3390/POLYM13172969.
dc.relationChilali, A.; Zouari, W.; Assarar, M.; Kebir, H.; Ayad, R. Analysis of the Mechanical Behaviour of Flax and Glass Fabrics-Reinforced Thermoplastic and Thermoset Resins. J. Reinf. Plast. Compos. 2016, 35, 1217-1232, doi:10.1177/0731684416645203.
dc.relationAllagui, S.; Mahi, A.E.; Rebiere, J.L.; Beyaoui, M.; Bouguecha, A.; Haddar, M. Effect of Recycling Cycles on the Mechanical and Damping Properties of Flax Fibre Reinforced Elium Composite: Experimental and Numerical Studies. J. Renew. Mater. 2021, 9, 695-721, doi:10.32604/jrm.2021.013586.
dc.relationAllagui, S.; Mahi, A.E.; Rebiere, J.-L.; Beyaoui, M.; Bouguecha, A.; Haddar, M. Experimental Studies of Mechanical Behavior and Damage Mechanisms of Recycled Flax/Elium Thermoplastic Composite. Polym. Polym. Compos. 2022, 30, 096739112210900, doi:10.1177/09673911221090048.
dc.relationJavanshour, F.; Prapavesis, A.; Pournoori, N.; Soares, G.C.; Orell, O.; Pärnänen, T.; Kanerva, M.; Vuure, A.W.V.; Sarlin, E. Impact and Fatigue Tolerant Natural Fibre Reinforced Thermoplastic Composites by Using Non-Dry Fibres. Compos. Part Appl. Sci. Manuf. 2022, 161, 107110, doi:10.1016/J.COMPOSITESA.2022.107110.
dc.relationPorras, A.; Hernandez, C.; Maranon, A. Material Compuesto Biodegradable de Fibra Natural de Manicaria Saccifera y Ácido Poli-Láctico, y Su Método de Fabricación. 2017.
dc.relationASTM D638-14. Standard Test Method for Tensile Properties of Plastics. 2015.
dc.relationASTM D790-17. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. 2017.
dc.relationASTM D256-10. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. 2018.
dc.relationASTM 2240-15. Standard Test Method for Rubber Property-Durometer Hardness. 2016.
dc.relationShevtsov, S.; Zhilyaev, I.; Chang, S.H.; Wu, J.K.; Huang, J.P.; Snezhina, N. Experimental and Numerical Study of Vacuum Resin Infusion for Thin-Walled Composite Parts. Appl. Sci. 2020 Vol 10 Page 1485 2020, 10, 1485, doi:10.3390/APP10041485.
dc.relationASTM D3039/D3039M-17. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. 2017.
dc.relationASTM D792-20. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. 2020.
dc.relationTorres-Arellano, M.; Renteria-Rodríguez, V.; Franco-Urquiza, E. Mechanical Properties of Natural-Fiber-Reinforced Biobased Epoxy Resins Manufactured by Resin Infusion Process. Polymers 2020, 12, 1-17, doi:10.3390/polym12122841.
dc.relationASTM D2734-16. Standard Test Methods for Standard Test Methods for Void Content of Reinforced Plastics. 2016.
dc.relationASTM D6980-17. Standard Test Method for Determination of Moisture in Plastics by Loss in Weight. 2017.
dc.relationASTM D570-22. Standard Test Method for Water Absorption of Plastics. 2022.
dc.relationASTM E1131-20. Standard Test Method for Compositional Analysis by Thermogravimetry. 2020.
dc.relationASTM D3818-21. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. 2021.
dc.relationFriedrich, K.; Almajid, A.A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 2013, 20, 107-128, doi:10.1007/S10443-012-9258-7/FIGURES/32.
dc.relationNaqvi, S.Z.; Ramkumar, J.; Kar, K.K. Fly Ash/Glass Fiber/Carbon Fiber-Reinforced Thermoset Composites. Handb. Fly Ash 2022, 373-400, doi:10.1016/B978-0-12-817686-3.00023-2.
dc.relationAmobonye, A.E.; Bhagwat, P.; Singh, S.; Pillai, S. Biodegradability of Polyvinyl Chloride. Biodegrad. Conv. Plast. Oppor. Chall. Misconceptions 2023, 201-220, doi:10.1016/B978-0-323-89858-4.00017-8.
dc.relationFitzer, E.; Schaefer, W.; Yamada, S. The Formation of Glasslike Carbon by Pyrolysis of Polyfurfuryl Alcohol and Phenolic Resin. Carbon 1969, 7, 643-648, doi:10.1016/0008-6223(69)90518-1.
dc.relationVenegas, R.; Torres, A.; Rueda, A.M.; Morales, M.A.; Arias, M.J.; Porras, A. Development and Characterization of Plantain (Musa Paradisiaca) Flour-Based Biopolymer Films Reinforced with Plantain Fibers. Polym. 2022 Vol 14 Page 748 2022, 14, 748, doi:10.3390/POLYM14040748.
dc.relationGholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829-892, doi:10.1007/s10853-019-03990-y.
dc.relationTitone, V.; Correnti, A.; Mantia, F.P.L. Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester. Polymers 2021, 13, doi:10.3390/POLYM13101616.
dc.relationOuarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing, 2019; pp. 43-60 ISBN 978-0-08-102292-4.
dc.relationAji, I.; Zainudin, E.; Abdan, K.; Sapuan, S.; Khairul, M. Mechanical Properties and Water Absorption Behavior of Hybridized Kenaf/Pineapple Leaf Fibre-Reinforced High-Density Polyethylene Composite. J. Compos. Mater. 2013, 47, 979-990, doi:10.1177/0021998312444147.
dc.relationCao, H.; Luo, Z.; Wang, C.; Wang, J.; Hu, T.; Xiao, L.; Che, J. The Stress Concentration Mechanism of Pores Affecting the Tensile Properties in Vacuum Die Casting Metals. Materials 2020, 13, doi:10.3390/MA13133019.
dc.relationLaachachi, A.; Ruch, D.; Addiego, F.; Ferriol, M.; Cochez, M.; Cuesta, J.M.L. Effect of ZnO and Organo-Modified Montmorillonite on Thermal Degradation of Poly(Methyl Methacrylate) Nanocomposites. Polym. Degrad. Stab. 2009, 94, 670-678, doi:10.1016/J.POLYMDEGRADSTAB.2008.12.022.
dc.relationGalka, P.; Kowalonek, J.; Kaczmarek, H. Thermogravimetric Analysis of Thermal Stability of Poly(Methyl Methacrylate) Films Modified with Photoinitiators. J. Therm. Anal. Calorim. 2014, 115, 1387-1394, doi:10.1007/S10973-013-3446-Z/TABLES/4.
dc.relationArkema. Material Safety Data Sheet: Elium All Grades. Available online: https://www.b2bcomposites.com/msds/atofina/818539.pdf.
dc.relationMuthuraj, R.; Grohens, Y.; Seantier, B. Mechanical and Thermal Insulation Properties of Elium Acrylic Resin/Cellulose Nanofiber Based Composite Aerogels. Nano-Struct. Nano-Objects 2017, 12, 68-76, doi:10.1016/J.NANOSO.2017.09.002.
dc.relationHozman-Manrique, A.S.; Garcia-Brand, A.J.; Hernández-Carrión, M.; Porras, A. Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Polym. 2023 Vol 15 Page 664 2023, 15, 664, doi:10.3390/POLYM15030664.
dc.relationNurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polym. 2021 Vol 13 Page 2710 2021, 13, 2710, doi:10.3390/POLYM13162710.
dc.relationDíez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Process. 2020 Vol 8 Page 1048 2020, 8, 1048, doi:10.3390/PR8091048.
dc.relationChen, J.; Li, J.; Xu, L.; Hong, W.; Yang, Y.; Chen, X. The Glass-Transition Temperature of Supported PMMA Thin Films with Hydrogen Bond/Plasmonic Interface. Polym. 2019 Vol 11 Page 601 2019, 11, 601, doi:10.3390/POLYM11040601.
dc.relationXia, Y.; Chen, J.; Zhu, Z.; Zhang, Q.; Yang, H.; Wang, Q. Significantly Enhanced Dielectric and Hydrophobic Properties of SiO2@MgO/PMMA Composite Films. RSC Adv. 2018, 8, 4032-4038, doi:10.1039/C7RA12695F.
dc.relationMurugan, R.; Pitchaimani, J. DYNAMIC MECHANICAL CHARACTERIZATION OF WOVEN NATURAL FIBER POLYMER COMPOSITE, 2017.
dc.relationGe, D.; Subramanian, N.R.; Yong, K.S.; Foo, M.Y.; Gan, S.L. The Impact of High Glass Transition Temperature of Molding Compounds on Power Package Warpage and Stress Performance. Proc. Electron. Packag. Technol. Conf. EPTC 2016, 2016-February, doi:10.1109/EPTC.2015.7412356.
dc.relationDixit, M.; Mathur, V.; Gupta, S.; Baboo, M.; Sharma, K.; Saxena, N.S. Morphology, Miscibility and Mechanical Properties of PMMA/PC Blends. http://dx.doi.org/10.1080/01411590903478304 2010, 82, 866-878, doi:10.1080/01411590903478304.
dc.relationFan, J.; Shi, Z.; Zhang, L.; Wang, J.; Yin, J. Aramid Nanofiber-Functionalized Graphene Nanosheets for Polymer Reinforcement. Nanoscale 2012, 4, 7046-7055, doi:10.1039/C2NR31907A.
dc.relationTalreja, R. A Mechanisms-Based Framework for Describing Failure in Composite Materials. Struct. Integr. Durab. Adv. Compos. Innov. Model. Methods Intell. Des. 2015, 25-42, doi:10.1016/B978-0-08-100137-0.00002-X.
dc.relationSrinivas, K.; Naidu, A.L.; Bahubalendruni, M.V.A.R. A Review on Chemical and Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Int. J. Perform. Eng. 2017, 13, 189, doi:10.23940/IJPE.17.02.P8.189200.
dc.relationFiore, V.; Scalici, T.; Vitale, G.; Valenza, A. Static and Dynamic Mechanical Properties of Arundo Donax Fillers-Epoxy Composites. Mater. Des. 2014, 57, 456-464, doi:10.1016/j.matdes.2014.01.025.
dc.relationAli, M.B.; Zakaria, K.A.; Abdullah, S.; Alkhari, M.R. Correlation of Impact Energy from Instrumented Charpy Impact. Appl. Mech. Mater. 2015, 815, 221-226, doi:10.4028/WWW.SCIENTIFIC.NET/AMM.815.221.
dc.relationKhalili, P.; Blinzler, B.; Kádár, R.; Bisschop, R.; Försth, M.; Blomqvist, P. Flammability, Smoke, Mechanical Behaviours and Morphology of Flame Retarded Natural Fibre/Elium® Composite. Mater. 2019 Vol 12 Page 2648 2019, 12, 2648, doi:10.3390/MA12172648.
dc.relationKhalili, P.; Blinzler, B.; Kádár, R.; Blomqvist, P.; Sandinge, A.; Bisschop, R.; Liu, X. Ramie Fabric Elium® Composites with Flame Retardant Coating: Flammability, Smoke, Viscoelastic and Mechanical Properties. Compos. Part Appl. Sci. Manuf. 2020, 137, 105986, doi:10.1016/J.COMPOSITESA.2020.105986.
dc.relationShinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil Palm Fiber (OPF) and Its Composites: A Review. Ind. Crops Prod. 2011, 33, 7-22, doi:10.1016/J.INDCROP.2010.09.009.
dc.relationBarbuta, M.; Bucur, R.D.; Cimpeanu, S.M.; Paraschiv, G.; Bucur, D.; Barbuta, M.; Bucur, R.D.; Cimpeanu, S.M.; Paraschiv, G.; Bucur, D. Wastes in Building Materials Industry. Agroecology 2015, doi:10.5772/59933.
dc.relationAshby, M.F. Material Efficiency. Mater. Environ. 2013, 415-436, doi:10.1016/B978-0-12-385971-6.00013-0.
dc.relationScott, K.; Giesekam, J.; Barrett, J.; Owen, A. Bridging the Climate Mitigation Gap with Economy-Wide Material Productivity. J. Ind. Ecol. 2019, 23, 918-931, doi:10.1111/JIEC.12831.
dc.relationWorrell, E.; Allwood, J.; Gutowski, T. The Role of Material Efficiency in Environmental Stewardship. Httpsdoiorg101146annurev-Env.-110615-085737 2016, 41, 575-598, doi:10.1146/ANNUREV-ENVIRON-110615-085737.
dc.relationAllwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material Efficiency: Providing Material Services with Less Material Production. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371, doi:10.1098/RSTA.2012.0496.
dc.relationEdenhofer, O.; Sokona, Y.; Minx, J.C.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Kriemann, B.; et al. Climate Change 2014 Mitigation of Climate Change. 2014.
dc.relationKhorasanizadeh, M.; Bazargan, A.; McKay, G. An Introduction to Sustainable Materials Management. Handb. Environ. Mater. Manag. 2018, 1-39, doi:10.1007/978-3-319-58538-3_105-1.
dc.relationMekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in Bio-Based Plastics and Plasticizing Modifications. J. Mater. Chem. A 2013, 1, 13379-13398, doi:10.1039/C3TA12555F.
dc.relationStorz, H. Bio-Based Plastics: Status, Challenges and Trends. Vorlop · Landbauforsch · Appl Agric For. Res · 4, 321-332, doi:10.3220/LBF_2013_321-332.
dc.relationSpierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.J. Bio-Based Plastics - A Review of Environmental, Social and Economic Impact Assessments. J. Clean. Prod. 2018, 185, 476-491, doi:10.1016/J.JCLEPRO.2018.03.014.
dc.relationShuaib, N.A.; Mativenga, P.T. Carbon Footprint Analysis of Fibre Reinforced Composite Recycling Processes. Procedia Manuf. 2017, 7, 183-190, doi:10.1016/J.PROMFG.2016.12.046.
dc.relationKuciel, S.; Mazur, K. Novel Hybrid Composite Based on Bio-PET with Basalt/Carbon Fibre. IOP Conf. Ser. Mater. Sci. Eng. 2019, 634, 012009, doi:10.1088/1757-899X/634/1/012009.
dc.relationMöhl, C.; Weimer, T.; Caliskan, M.; Baz, S.; Bauder, H.J.; Gresser, G.T. Development of Natural Fibre-Reinforced Semi-Finished Products with Bio-Based Matrix for Eco-Friendly Composites. Polym. 2022 Vol 14 Page 698 2022, 14, 698, doi:10.3390/POLYM14040698.
dc.relationCurvelo, A.A.S.; De Carvalho, A.J.F.; Agnelli, J.A.M. Thermoplastic Starch-Cellulosic Fibers Composites: Preliminary Results. Carbohydr. Polym. 2001, 45, 183-188, doi:10.1016/S0144-8617(00)00314-3.
dc.relationAlix, S.; Marais, S.; Morvan, C.; Lebrun, L. Biocomposite Materials from Flax Plants: Preparation and Properties. Compos. Part Appl. Sci. Manuf. 2008, 39, 1793-1801, doi:10.1016/J.COMPOSITESA.2008.08.008.
dc.relationRahman, M.M.; Afrin, S.; Haque, P.; Islam, M.M.; Islam, M.S.; Gafur, M.A. Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly(l-Lactic Acid) Biocomposite for Biomedical Applications. Int. J. Chem. Eng. 2014, doi:10.1155/2014/842147.
dc.relationPorras, J.; Morales, M.A.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Characterization of Novel Sustainable Composite Materials Based on Elium® 188 o Resin Reinforced with a Colombian Natural Fiber. In Proceedings of the Composites Meet Sustainability Proceedings of the 20th European Conference on Composite Materials; Lausanne, Switzerland, 2022.
dc.relationCousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling Glass Fiber Thermoplastic Composites from Wind Turbine Blades. J. Clean. Prod. 2019, 209, 1252-1263, doi:10.1016/j.jclepro.2018.10.286.
dc.relationSteenkamer, D.A.; Sullivan, J.L. On the Recyclability of a Cyclic Thermoplastic Composite Material. Compos. Part B Eng. 1998, 29, 745-752, doi:10.1016/S1359-8368(98)00016-X.
dc.relationSchinner, G.; Brandt, J.; Richter, H. Recycling Carbon-Fiber-Reinforced Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1996, 9, 239-245, doi:10.1177/089270579600900302.
dc.relationLongana, M.L.; Ong, N.; Yu, H.; Potter, K.D. Multiple Closed Loop Recycling of Carbon Fibre Composites with the HiPerDiF (High Performance Discontinuous Fibre) Method. Compos. Struct. 2016, 153, 271-277, doi:10.1016/j.compstruct.2016.06.018.
dc.relationZhao, X.; Copenhaver, K.; Wang, L.; Korey, M.; Gardner, D.J.; Li, K.; Lamm, M.E.; Kishore, V.; Bhagia, S.; Tajvidi, M.; et al. Recycling of Natural Fiber Composites: Challenges and Opportunities. Resour. Conserv. Recycl. 2022, 177, 105962, doi:10.1016/j.resconrec.2021.105962.
dc.relationBhattacharjee, S.; Bajwa, D.S. Degradation in the Mechanical and Thermo-Mechanical Properties of Natural Fiber Filled Polymer Composites Due to Recycling. Constr. Build. Mater. 2018, 172, 1-9, doi:10.1016/j.conbuildmat.2018.03.010.
dc.relationZhu, Y.; Zhang, Z.; Zhang, F. Research on Users Product Color Perception of Automobile. 9th Int. Conf. Comput.-Aided Ind. Des. Concept. Des. Multicult. Creat. Des. - CAIDCD 2008 2008, 869-873, doi:10.1109/CAIDCD.2008.4730699.
dc.relationVöltz, L.R.; Di Guiseppe, I.; Geng, S.; Oksman, K. The Effect of Recycling on Wood-Fiber Thermoplastic Composites. Polym. 2020 Vol 12 Page 1750 2020, 12, 1750, doi:10.3390/POLYM12081750.
dc.relationJiun, Y.L.; Tze, C.T.; Moosa, U.; Tawawneh, M.A. Effects of Recycling Cycle on Used Thermoplastic Polymer and Thermoplastic Elastomer Polymer. https://doi.org/10.1177/096739111602400909 2016, 24, 735-740, doi:10.1177/096739111602400909.
dc.relationASTM E313-20. Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates. 2020, doi:10.1520/E0313-20.
dc.relationLister, G.G.; Waymouth, J.F. Light Sources. Encycl. Phys. Sci. Technol. 2003, 557-595, doi:10.1016/B0-12-227410-5/00378-1.
dc.relationWare, C. Color. Inf. Vis. 2021, 95-141, doi:10.1016/B978-0-12-812875-6.00004-9.
dc.relationASTM D7856-21. Standard Specification for Color and Appearance Retention of Solid and Variegated Color Plastic Siding Products Using CIELab Color Space. 2021.
dc.relationConesa, A.; Manera, F.C.; Brotons, J.M.; Fernandez-Zapata, J.C.; Simón, I.; Simón-Grao, S.; Alfosea-Simón, M.; Martínez Nicolás, J.J.; Valverde, J.M.; García-Sanchez, F. Changes in the Content of Chlorophylls and Carotenoids in the Rind of Fino 49 Lemons during Maturation and Their Relationship with Parameters from the CIELAB Color Space. Sci. Hortic. 2019, 243, 252-260, doi:10.1016/J.SCIENTA.2018.08.030.
dc.relationReckendorf, I.M.Z.; Sahki, A.; Perrin, D.; Lacoste, C.; Bergeret, A.; Ohayon, A.; Morand, K. Chemical Recycling of Vacuum-Infused Thermoplastic Acrylate-Based Composites Reinforced by Basalt Fabrics. Polymers 2022, 14, doi:10.3390/POLYM14061083.
dc.relationCharmondusit, K.; Seeluangsawat, L. Recycling of Poly(Methyl Methacrylate) Scrap in the Styrene-Methyl Methacrylate Copolymer Cast Sheet Process. Resour. Conserv. Recycl. 2009, 54, 97-103, doi:10.1016/J.RESCONREC.2009.07.005.
dc.relationASTM D5026-15. Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension. 2015.
dc.relationMedina, L.A.; Dzalto, J. 1.11 Natural Fibers. Compr. Compos. Mater. II 2018, 269-294, doi:10.1016/B978-0-12-803581-8.09877-5.
dc.relationChatterjee, A. Thermal Degradation Analysis of Thermoset Resins. J. Appl. Polym. Sci. 2009, 114, 1417-1425, doi:10.1002/APP.30664.
dc.relationDomingos, P.A. dos S.; Garcia, P.P.N.S.; de Oliveira, A.L.B.M.; Palma-Dibb, R.G. Composite Resin Color Stability: Influence of Light Sources and Immersion Media. J. Appl. Oral Sci. 2011, 19, 204-211, doi:10.1590/S1678-77572011000300005.
dc.relationSapieha, S.; Pupo, J.F.; Schreiber, H.P. Thermal Degradation of Cellulose-Containing Composites during Processing. J. Appl. Polym. Sci. 1989, 37, 233-240, doi:10.1002/APP.1989.070370118.
dc.relationCao, X.T.; Bach, L.G.; Islam, M.R.; Lim, K.T. A Simple Synthesis, Characterization, and Properties of Poly(Methyl Methacrylate) Grafted CdTe Nanocrystals. https://doi.org/10.1080/15421406.2015.1076305 2015, 618, 111-119, doi:10.1080/15421406.2015.1076305.
dc.relationArkema. SAFETY DATA SHEET ELIUM® ALL GRADES. 2021.
dc.relationYeng, L.C.; Wahit, M.U.; Othman, N. THERMAL AND FLEXURAL PROPERTIES OF REGENERATED CELLULOSE(RC)/POLY(3-HYDROXYBUTYRATE)(PHB)BIOCOMPOSITES. J. Teknol. 2015, 75, 107-112, doi:10.11113/JT.V75.5338.
dc.relationCalahorra, M.E.; Cortázar, M.; Eguiazábal, J.I.; Guzmán, G.M. Thermogravimetric Analysis of Cellulose: Effect of the Molecular Weight on Thermal Decomposition. J. Appl. Polym. Sci. 1989, 37, 3305-3314, doi:10.1002/APP.1989.070371203.
dc.relationKok, M.V.; Ozgur, E. Characterization of Lignocellulose Biomass and Model Compounds by Thermogravimetry. http://dx.doi.org/10.1080/15567036.2016.1214643 2017, 39, 134-139, doi:10.1080/15567036.2016.1214643.
dc.relationArbelaiz, A.; Fernández, B.; Ramos, J.A.; Mondragon, I. Thermal and Crystallization Studies of Short Flax Fibre Reinforced Polypropylene Matrix Composites: Effect of Treatments. Thermochim. Acta 2006, 440, 111-121, doi:10.1016/J.TCA.2005.10.016.
dc.relationIR Spectrum Table. Available online: https://www.sigmaaldrich.com/CO/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table.
dc.relationChebil, M.S.; Gerard, P.; Issard, H.; Richaud, E. Thermal Stability of Polymethacrylic Based ELIUM® Resin: Effect of Comonomers, Antioxidants and Aluminum Trihydrate Filler. Polym. Degrad. Stab. 2023, 213, 110367, doi:10.1016/j.polymdegradstab.2023.110367.
dc.relationPopescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral Characterization of Eucalyptus Wood. http://dx.doi.org/10.1366/000370207782597076 2007, 61, 1168-1177, doi:10.1366/000370207782597076.
dc.relationDan-asabe, B.; Yaro, A.S.; Yawas, D.S.; Aku, S.Y.; Samotu, I.A.; Abubakar, U.; Obada, D.O. Mechanical, Spectroscopic and Micro-Structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material. Tribol. Ind. 2016, 38, 255-266.
dc.relationKim, H.S.; Yang, H.S.; Kim, H.J. Biodegradability and Mechanical Properties of Agro-Flour-Filled Polybutylene Succinate Biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513-1521, doi:10.1002/APP.21905.
dc.relationEssabir, H.; Hilali, E.; Elgharad, A.; El Minor, H.; Imad, A.; Elamraoui, A.; Al Gaoudi, O. Mechanical and Thermal Properties of Bio-Composites Based on Polypropylene Reinforced with Nut-Shells of Argan Particles. Mater. Des. 2013, 49, 442-448, doi:10.1016/J.MATDES.2013.01.025.
dc.relationZhang, S.; Liang, Y.; Qian, X.; Hui, D.; Sheng, K. Pyrolysis Kinetics and Mechanical Properties of Poly(Lactic Acid)/Bamboo Particle Biocomposites: Effect of Particle Size Distribution. Nanotechnol. Rev. 2020, 9, 524-533, doi:10.1515/NTREV-2020-0037/MACHINEREADABLECITATION/RIS.
dc.relationSajin, J.B.; Babu Aurtherson, P.; Binoj, J.S.; Manikandan, N.; Senthil Saravanan, M.S.; Haarison, T.M. Influence of Fiber Length on Mechanical Properties and Microstructural Analysis of Jute Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 39, 398-402, doi:10.1016/J.MATPR.2020.07.623.
dc.relationAmiandamhen, S.O.; Meincken, M.; Tyhoda, L. Natural Fibre Modification and Its Influence on Fibre-Matrix Interfacial Properties in Biocomposite Materials. Fibers Polym. 2020, 21, 677-689, doi:10.1007/S12221-020-9362-5/METRICS.
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleDevelopment and evaluation of a recyclable composite material from acrylic thermoplastic resin and Manicaria saccifera fabric
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución