dc.contributorMacías López, Mario Alberto
dc.contributorHurtado Belalcazar, John Jady
dc.contributorZapata Rivera, Jhon Enrique
dc.contributorMiscione, Gian Pietro
dc.contributorGrupo de investigación: Cristalografía y Química de Materiales
dc.creatorSánchez Sánchez, Cristian Camilo
dc.date.accessioned2023-08-03T14:09:03Z
dc.date.accessioned2023-09-06T23:40:57Z
dc.date.available2023-08-03T14:09:03Z
dc.date.available2023-09-06T23:40:57Z
dc.date.created2023-08-03T14:09:03Z
dc.date.issued2022-06-01
dc.identifierhttp://hdl.handle.net/1992/69155
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8726734
dc.description.abstractDos nuevos cocristales farmacéuticos: 1. PZA-ATE (pirazinamida-ácido tereftálico), 2. PZA-ATR (pirazinamida-ácido trimésico) fueron sintetizados y caracterizados mediante difracción de rayos-X de monocristal (DRXM). Como resultado se encontró que la PZA formó un cocristal 1:1 con ATE, mientras con ATR formó un cocristal 2:1. Este trabajo muestra, describe y analiza la estructura molecular y supramolecular de ambas estructuras cristalinas no reportadas previamente
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherQuímica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationJaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J. 2014 Sep;281(18):3985-4009. doi: 10.1111/febs.12796. Epub 2014 Apr 17. PMID: 24698025; PMCID: PMC6309182
dc.relationSchwarzenbach, Dieter. (2013). History of Crystallography
dc.relationSteurer, W. (2007). What is a crystal?: Introductory remarks to an ongoing discussion. Zeitschrift Für Kristallographie, 222(6). doi:10.1524/zkri.2007.222.6.308
dc.relationLifshitz, Ron. (2007). What is a crystal?. Zeitschrift Fur Kristallographie. 222. 313-317. 10.1524/zkri.2007.222.6.313
dc.relationYu, L., & Reutzel-Edens, S. M. (2003). CRYSTALLIZATION | Basic Principles. Encyclopedia of Food Sciences and Nutrition, 1697-1702. doi:10.1016/b0-12-227055-x/00313-8
dc.relationSauter, Claude & Lorber, Bernard & McPherson, Alexander & Giegé, Richard. (2012). Crystallization - General Methods
dc.relationPrasad, M. R., Deb, P. K., Chandrasekaran, B., Maheshwari, R., & Tekade, R. K. (2018). Basics of Crystallization Process Applied in Drug Exploration. Dosage Form Design Parameters, 67-103. doi:10.1016/b978-0-12-814421-3.00003-8
dc.relationChen, Y., Ma, P., & Gui, S. (2014). Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems. BioMed Research International, 2014, 1-12. doi:10.1155/2014/815981
dc.relationAitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., ... Zaworotko, M. J. (2012). Polymorphs, Salts, and Cocrystals: What's in a Name? Crystal Growth & Design, 12(5), 2147-2152. doi:10.1021/cg3002948
dc.relationYadav A., Shete A., Dabke A., Kulkarni P., Sakhare S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009;71:359. doi: 10.4103/0250-474X.5728
dc.relationKumar, Sandeep & Nanda, Arun. (2017). Pharmaceutical Cocrystals: An Overview. Indian Journal of Pharmaceutical Sciences. 79. 10.4172/pharmaceutical-sciences.1000302
dc.relationDutt B, Choudhary M, Budhwar V. Cocrystallization: An innovative route toward better medication. J Rep Pharma Sci 2020;9:256-70
dc.relationChilds, S. L., & Zaworotko, M. J. (Eds.). (2009). The Reemergence of Cocrystals: The Crystal Clear Writing Is on the WallIntroduction to Virtual Special Issue on Pharmaceutical Cocrystals. Crystal Growth & Design, 9(10), 4208-4211. doi:10.1021/cg901002y
dc.relationAscierto, P.A., Marincola, F.M. Combination therapy: the next opportunity and challenge of medicine. J Transl Med 9, 115 (2011). https://doi.org/10.1186/1479-5876-9-115
dc.relationMcMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., & Zaworotko, M. J. (2005). Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Zeitschrift Für Kristallographie - Crystalline Materials, 220(4). doi:10.1524/zkri.220.4.340.61624
dc.relationGrobelny, P., Mukherjee, A., & Desiraju, G. R. (2011). Drug-drug co-crystals: Temperature dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm, 13(13), 4358. doi:10.1039/c0ce00842g
dc.relationCherukuvada, S., & Nangia, A. (2012). Fast dissolving eutectic compositions of two antitubercular drugs. CrystEngComm, 14(7), 2579. doi:10.1039/c2ce06391c
dc.relationAdalder, T. K., Sankolli, R., & Dastidar, P. (2012). Homo- or Heterosynthon? A Crystallographic Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Crystal Growth & Design, 12(5), 2533-2542. doi:10.1021/cg300140w
dc.relationLuo, Y.-H., & Sun, B.-W. (2013). Pharmaceutical Co-Crystals of Pyrazinecarboxamide (PZA) with Various Carboxylic Acids: Crystallography, Hirshfeld Surfaces, and Dissolution Study. Crystal Growth & Design, 13(5), 2098-2106. doi:10.1021/cg400167w
dc.relationLou, M., Mao, S.-H., Luo, Y.-H., Zhao, P., & Sun, B.-W. (2013). Synthesis, co-crystal structure and characterization of pyrazinamide with m-hydroxybenzoic acid, p-hydroxybenzoic acid and 3,4-dihydroxy benzolic acid. Research on Chemical Intermediates, 41(5), 2939-2951. doi:10.1007/s11164-013-1402-y
dc.relationWang, J.-R., Ye, C., Zhu, B., Zhou, C., & Mei, X. (2015). Pharmaceutical cocrystals of the anti tuberculosis drug pyrazinamide with dicarboxylic and tricarboxylic acids. CrystEngComm, 17(4), 747-752. doi:10.1039/c4ce02044h
dc.relationAbourahma, H., Shah, D. D., Melendez, J., Johnson, E. J., & Holman, K. T. (2015). A Tale of Two Stoichiometrically Diverse Cocrystals. Crystal Growth & Design, 15(7), 3101-3104. doi:10.1021/acs.cgd.5b00357
dc.relationThorat, S. H., Sahu, S. K., & Gonnade, R. G. (2015). Crystal structures of the pyrazinamide-p-aminobenzoic acid (1/1) cocrystal and the transamidation reaction product 4-(pyrazine-2- carboxamido)benzoic acid in the molten state. Acta Crystallographica Section C Structural Chemistry, 71(11), 1010-1016. doi:10.1107/s2053229615019828
dc.relationKulla, H., Greiser, S., Benemann, S., Rademann, K., & Emmerling, F. (2016). In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid. Molecules, 21(7), 917. doi:10.3390/molecules21070917
dc.relationJarzembska, K. N., Hoser, A. A., Varughese, S., Kaminski, R., Malinska, M., Stachowicz, M., ... Wozniak, K. (2017). Structural and Energetic Analysis of Molecular Assemblies in a Series of Nicotinamide and Pyrazinamide Cocrystals with Dihydroxybenzoic Acids. Crystal Growth & Design, 17(9), 4918-4931. doi:10.1021/acs.cgd.7b00868
dc.relationSarmah, K. K., Rajbongshi, T., Bhowmick, S., & Thakuria, R. (2017). First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 73(5), 1007-1016. doi:10.1107/s2052520617011477
dc.relationLiu, F., Song, Y., Liu, Y.-N., Li, Y.-T., Wu, Z.-Y., & Yan, C.-W. (2018). Drug-Bridge-Drug Ternary Cocrystallization Strategy for Antituberculosis Drugs Combination. Crystal Growth & Design, 18(3), 1283-1286. doi:10.1021/acs.cgd.7b01738
dc.relationBommaka, M. K., Mannava, M. K. C., Suresh, K., gunnam, anilkumar, & Nangia, A. (2018). Entacapone: Improving Aqueous Solubility, Diffusion Permeability and Cocrystal Stability with Theophylline. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00921
dc.relationRajbongshi, T., Sarmah, K. K., Sarkar, A., Ganduri, R., Cherukuvada, S., Thakur, T. S., & Thakuria, R. (2018). Preparation of Pyrazinamide Eutectics Vs. Cocrystals Based on Supramolecular Synthon Variations. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00878
dc.relationKulla, H., Michalchuk, A. A. L., & Emmerling, F. (2019). Manipulating the Dynamics of Mechanochemical Ternary Co-Crystal Formation. Chemical Communications. doi:10.1039/c9cc03034d
dc.relationKulla, H., Becker, C., Michalchuk, A. A. L., Linberg, K., Paulus, B., & Emmerling, F. (2019). Tuning the apparent stability of polymorphic cocrystals through mechanochemistry. Crystal Growth & Design. doi:10.1021/acs.cgd.9b01158
dc.relation32. Who.int. 2021. Tuberculosis. [online] Available at: https://www.who.int/es/newsroom/fact-sheets/detail/tuberculosis
dc.relationTuberculosis - OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/tuberculosis
dc.relationChurchyard, G., Kim, P., Shah, N. S., Rustomjee, R., Gandhi, N., Mathema, B., Dowdy, D., Kasmar, A., & Cardenas, V. (2017). What We Know About Tuberculosis Transmission: An Overview. The Journal of infectious diseases, 216(suppl_6), S629-S635. https://doi.org/10.1093/infdis/jix362
dc.relationHistory of Tuberculosis. (1994). Tuberculosis, 13-24. doi:10.1128/9781555818357.ch2
dc.relationManual operativo de la OMS sobre la tuberculosis. Módulo 4: Tratamiento. Tratamiento de la tuberculosis farmacorresistente. Washington, D.C.: Organización Panamericana de la Salud; 2022. Licencia: CC BY-NC-SA 3.0 IGO. https://doi. org/10.37774/9789275325575
dc.relationNahid, P., Dorman, S. E., Alipanah, N., Barry, P. M., Brozek, J. L., Cattamanchi, A., Chaisson, L. H., Chaisson, R. E., Daley, C. L., Grzemska, M., Higashi, J. M., Ho, C. S., Hopewell, P. C., Keshavjee, S. A., Lienhardt, C., Menzies, R., Merrifield, C., Narita, M., O'Brien, R., Peloquin, C. A., ... Vernon, A. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 63(7), e147-e195. https://doi.org/10.1093/cid/ciw376
dc.relationHarmon, R. C. (2007). Pyrazinamide. xPharm: The Comprehensive Pharmacology Reference, 1-5. doi:10.1016/b978-008055232-3.62492-4
dc.relationCherukuvada, S., Thakuria, R., & Nangia, A. (2010). Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy. Crystal Growth & Design, 10(9), 3931-3941. doi:10.1021/cg1004424
dc.relationTakaki, Y., Sasada, Y., & Watanabé, T. (1960). The crystal structure of alpha-pyrazinamide. Acta Crystallographica, 13(9), 693-702. doi:10.1107/s0365110x60001680
dc.relationWang, D., Yang, Z., Zhu, B., Mei, X., & Luo, X. (2020). Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Crystal Growth & Design, 20(10), 6610-6621. doi:10.1021/acs.cgd.0c00767
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleCocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución