dc.contributor | Macías López, Mario Alberto | |
dc.contributor | Hurtado Belalcazar, John Jady | |
dc.contributor | Zapata Rivera, Jhon Enrique | |
dc.contributor | Miscione, Gian Pietro | |
dc.contributor | Grupo de investigación: Cristalografía y Química de Materiales | |
dc.creator | Sánchez Sánchez, Cristian Camilo | |
dc.date.accessioned | 2023-08-03T14:09:03Z | |
dc.date.accessioned | 2023-09-06T23:40:57Z | |
dc.date.available | 2023-08-03T14:09:03Z | |
dc.date.available | 2023-09-06T23:40:57Z | |
dc.date.created | 2023-08-03T14:09:03Z | |
dc.date.issued | 2022-06-01 | |
dc.identifier | http://hdl.handle.net/1992/69155 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726734 | |
dc.description.abstract | Dos nuevos cocristales farmacéuticos: 1. PZA-ATE (pirazinamida-ácido tereftálico), 2.
PZA-ATR (pirazinamida-ácido trimésico) fueron sintetizados y caracterizados mediante
difracción de rayos-X de monocristal (DRXM). Como resultado se encontró que la PZA
formó un cocristal 1:1 con ATE, mientras con ATR formó un cocristal 2:1. Este trabajo
muestra, describe y analiza la estructura molecular y supramolecular de ambas
estructuras cristalinas no reportadas previamente | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | Jaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography,
illustrated by a family tree and its Nobel fruits. FEBS J. 2014 Sep;281(18):3985-4009. doi:
10.1111/febs.12796. Epub 2014 Apr 17. PMID: 24698025; PMCID: PMC6309182 | |
dc.relation | Schwarzenbach, Dieter. (2013). History of Crystallography | |
dc.relation | Steurer, W. (2007). What is a crystal?: Introductory remarks to an ongoing discussion.
Zeitschrift Für Kristallographie, 222(6). doi:10.1524/zkri.2007.222.6.308 | |
dc.relation | Lifshitz, Ron. (2007). What is a crystal?. Zeitschrift Fur Kristallographie. 222. 313-317.
10.1524/zkri.2007.222.6.313 | |
dc.relation | Yu, L., & Reutzel-Edens, S. M. (2003). CRYSTALLIZATION | Basic Principles. Encyclopedia of
Food Sciences and Nutrition, 1697-1702. doi:10.1016/b0-12-227055-x/00313-8 | |
dc.relation | Sauter, Claude & Lorber, Bernard & McPherson, Alexander & Giegé, Richard. (2012).
Crystallization - General Methods | |
dc.relation | Prasad, M. R., Deb, P. K., Chandrasekaran, B., Maheshwari, R., & Tekade, R. K. (2018). Basics of
Crystallization Process Applied in Drug Exploration. Dosage Form Design Parameters, 67-103. doi:10.1016/b978-0-12-814421-3.00003-8 | |
dc.relation | Chen, Y., Ma, P., & Gui, S. (2014). Cubic and Hexagonal Liquid Crystals as Drug Delivery
Systems. BioMed Research International, 2014, 1-12. doi:10.1155/2014/815981 | |
dc.relation | Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., ...
Zaworotko, M. J. (2012). Polymorphs, Salts, and Cocrystals: What's in a Name? Crystal Growth
& Design, 12(5), 2147-2152. doi:10.1021/cg3002948 | |
dc.relation | Yadav A., Shete A., Dabke A., Kulkarni P., Sakhare S. Co-crystals: A novel approach to modify
physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci.
2009;71:359. doi: 10.4103/0250-474X.5728 | |
dc.relation | Kumar, Sandeep & Nanda, Arun. (2017). Pharmaceutical Cocrystals: An Overview. Indian
Journal of Pharmaceutical Sciences. 79. 10.4172/pharmaceutical-sciences.1000302 | |
dc.relation | Dutt B, Choudhary M, Budhwar V. Cocrystallization: An innovative route toward better
medication. J Rep Pharma Sci 2020;9:256-70 | |
dc.relation | Childs, S. L., & Zaworotko, M. J. (Eds.). (2009). The Reemergence of Cocrystals: The Crystal Clear Writing Is on the WallIntroduction to Virtual Special Issue on Pharmaceutical
Cocrystals. Crystal Growth & Design, 9(10), 4208-4211. doi:10.1021/cg901002y | |
dc.relation | Ascierto, P.A., Marincola, F.M. Combination therapy: the next opportunity and challenge of
medicine. J Transl Med 9, 115 (2011). https://doi.org/10.1186/1479-5876-9-115 | |
dc.relation | McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., & Zaworotko, M. J.
(2005). Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide
supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals.
Zeitschrift Für Kristallographie - Crystalline Materials, 220(4).
doi:10.1524/zkri.220.4.340.61624 | |
dc.relation | Grobelny, P., Mukherjee, A., & Desiraju, G. R. (2011). Drug-drug co-crystals: Temperature dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid.
CrystEngComm, 13(13), 4358. doi:10.1039/c0ce00842g | |
dc.relation | Cherukuvada, S., & Nangia, A. (2012). Fast dissolving eutectic compositions of two antitubercular drugs. CrystEngComm, 14(7), 2579. doi:10.1039/c2ce06391c | |
dc.relation | Adalder, T. K., Sankolli, R., & Dastidar, P. (2012). Homo- or Heterosynthon? A Crystallographic
Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various
Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Crystal Growth & Design,
12(5), 2533-2542. doi:10.1021/cg300140w | |
dc.relation | Luo, Y.-H., & Sun, B.-W. (2013). Pharmaceutical Co-Crystals of Pyrazinecarboxamide (PZA)
with Various Carboxylic Acids: Crystallography, Hirshfeld Surfaces, and Dissolution Study.
Crystal Growth & Design, 13(5), 2098-2106. doi:10.1021/cg400167w | |
dc.relation | Lou, M., Mao, S.-H., Luo, Y.-H., Zhao, P., & Sun, B.-W. (2013). Synthesis, co-crystal structure and
characterization of pyrazinamide with m-hydroxybenzoic acid, p-hydroxybenzoic acid and
3,4-dihydroxy benzolic acid. Research on Chemical Intermediates, 41(5), 2939-2951.
doi:10.1007/s11164-013-1402-y | |
dc.relation | Wang, J.-R., Ye, C., Zhu, B., Zhou, C., & Mei, X. (2015). Pharmaceutical cocrystals of the anti tuberculosis drug pyrazinamide with dicarboxylic and tricarboxylic acids. CrystEngComm,
17(4), 747-752. doi:10.1039/c4ce02044h | |
dc.relation | Abourahma, H., Shah, D. D., Melendez, J., Johnson, E. J., & Holman, K. T. (2015). A Tale of Two
Stoichiometrically Diverse Cocrystals. Crystal Growth & Design, 15(7), 3101-3104.
doi:10.1021/acs.cgd.5b00357 | |
dc.relation | Thorat, S. H., Sahu, S. K., & Gonnade, R. G. (2015). Crystal structures of the pyrazinamide-p-aminobenzoic acid (1/1) cocrystal and the transamidation reaction product 4-(pyrazine-2-
carboxamido)benzoic acid in the molten state. Acta Crystallographica Section C Structural
Chemistry, 71(11), 1010-1016. doi:10.1107/s2053229615019828 | |
dc.relation | Kulla, H., Greiser, S., Benemann, S., Rademann, K., & Emmerling, F. (2016). In Situ Investigation
of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.
Molecules, 21(7), 917. doi:10.3390/molecules21070917 | |
dc.relation | Jarzembska, K. N., Hoser, A. A., Varughese, S., Kaminski, R., Malinska, M., Stachowicz, M., ...
Wozniak, K. (2017). Structural and Energetic Analysis of Molecular Assemblies in a Series of
Nicotinamide and Pyrazinamide Cocrystals with Dihydroxybenzoic Acids. Crystal Growth &
Design, 17(9), 4918-4931. doi:10.1021/acs.cgd.7b00868 | |
dc.relation | Sarmah, K. K., Rajbongshi, T., Bhowmick, S., & Thakuria, R. (2017). First-line antituberculosis
drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta
Crystallographica Section B Structural Science, Crystal Engineering and Materials, 73(5),
1007-1016. doi:10.1107/s2052520617011477 | |
dc.relation | Liu, F., Song, Y., Liu, Y.-N., Li, Y.-T., Wu, Z.-Y., & Yan, C.-W. (2018). Drug-Bridge-Drug Ternary
Cocrystallization Strategy for Antituberculosis Drugs Combination. Crystal Growth & Design,
18(3), 1283-1286. doi:10.1021/acs.cgd.7b01738 | |
dc.relation | Bommaka, M. K., Mannava, M. K. C., Suresh, K., gunnam, anilkumar, & Nangia, A. (2018).
Entacapone: Improving Aqueous Solubility, Diffusion Permeability and Cocrystal Stability
with Theophylline. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00921 | |
dc.relation | Rajbongshi, T., Sarmah, K. K., Sarkar, A., Ganduri, R., Cherukuvada, S., Thakur, T. S., & Thakuria,
R. (2018). Preparation of Pyrazinamide Eutectics Vs. Cocrystals Based on Supramolecular
Synthon Variations. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00878 | |
dc.relation | Kulla, H., Michalchuk, A. A. L., & Emmerling, F. (2019). Manipulating the Dynamics of
Mechanochemical Ternary Co-Crystal Formation. Chemical Communications.
doi:10.1039/c9cc03034d | |
dc.relation | Kulla, H., Becker, C., Michalchuk, A. A. L., Linberg, K., Paulus, B., & Emmerling, F. (2019). Tuning
the apparent stability of polymorphic cocrystals through mechanochemistry. Crystal Growth
& Design. doi:10.1021/acs.cgd.9b01158 | |
dc.relation | 32. Who.int. 2021. Tuberculosis. [online] Available at: https://www.who.int/es/newsroom/fact-sheets/detail/tuberculosis | |
dc.relation | Tuberculosis - OPS/OMS | Organización Panamericana de la Salud.
https://www.paho.org/es/temas/tuberculosis | |
dc.relation | Churchyard, G., Kim, P., Shah, N. S., Rustomjee, R., Gandhi, N., Mathema, B., Dowdy, D., Kasmar,
A., & Cardenas, V. (2017). What We Know About Tuberculosis Transmission: An Overview.
The Journal of infectious diseases, 216(suppl_6), S629-S635.
https://doi.org/10.1093/infdis/jix362 | |
dc.relation | History of Tuberculosis. (1994). Tuberculosis, 13-24. doi:10.1128/9781555818357.ch2 | |
dc.relation | Manual operativo de la OMS sobre la tuberculosis. Módulo 4: Tratamiento. Tratamiento de la
tuberculosis farmacorresistente. Washington, D.C.: Organización Panamericana de la Salud;
2022. Licencia: CC BY-NC-SA 3.0 IGO. https://doi. org/10.37774/9789275325575 | |
dc.relation | Nahid, P., Dorman, S. E., Alipanah, N., Barry, P. M., Brozek, J. L., Cattamanchi, A., Chaisson, L. H.,
Chaisson, R. E., Daley, C. L., Grzemska, M., Higashi, J. M., Ho, C. S., Hopewell, P. C., Keshavjee, S.
A., Lienhardt, C., Menzies, R., Merrifield, C., Narita, M., O'Brien, R., Peloquin, C. A., ... Vernon, A.
(2016). Official American Thoracic Society/Centers for Disease Control and
Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of
Drug-Susceptible Tuberculosis. Clinical infectious diseases : an official publication of the
Infectious Diseases Society of America, 63(7), e147-e195.
https://doi.org/10.1093/cid/ciw376 | |
dc.relation | Harmon, R. C. (2007). Pyrazinamide. xPharm: The Comprehensive Pharmacology Reference,
1-5. doi:10.1016/b978-008055232-3.62492-4 | |
dc.relation | Cherukuvada, S., Thakuria, R., & Nangia, A. (2010). Pyrazinamide Polymorphs: Relative
Stability and Vibrational Spectroscopy. Crystal Growth & Design, 10(9), 3931-3941.
doi:10.1021/cg1004424 | |
dc.relation | Takaki, Y., Sasada, Y., & Watanabé, T. (1960). The crystal structure of alpha-pyrazinamide. Acta
Crystallographica, 13(9), 693-702. doi:10.1107/s0365110x60001680 | |
dc.relation | Wang, D., Yang, Z., Zhu, B., Mei, X., & Luo, X. (2020). Machine-Learning-Guided Cocrystal
Prediction Based on Large Data Base. Crystal Growth & Design, 20(10), 6610-6621.
doi:10.1021/acs.cgd.0c00767 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural | |
dc.type | Trabajo de grado - Pregrado | |